

Unusual Pathways for Metal-Assisted C–C and C–P Coupling Reactions Using Allenylidenerhodium Complexes as Precursors

Helmut Werner,* Ralf Wiedemann, Matthias Laubender, Bettina Windmüller, Paul Steinert, Olaf Gevert, and Justin Wolf

Contribution from the Institut für Anorganische Chemie der Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany

Received November 6, 2001

Abstract: The rhodium allenylidenes trans-[RhCl{=C=C=C(Ph)R}(PiPr_3)_2] [R = Ph (1), p-Tol (2)] react with NaC₅H₅ to give the half-sandwich type complexes $[(\eta^5-C_5H_5)Rh\{=C=C=C(Ph)R\}(PiPr_3)]$ (3, 4). The reaction of **1** with the Grignard reagent CH_2 =CHMgBr affords the η^3 -pentatrienyl compound [Rh(η^3 - $CH_2CHC = C = CPh_2 (P_iPr_3)_2$ (6), which in the presence of CO rearranges to the η^1 -pentatrienyl derivative trans-[Rh{ η^1 -C(CH=CH₂)=C=CPh₂}(CO)(PiPr₃)₂] (7). Treatment of 7 with acetic acid generates the vinylallene CH2=CH-CH=C=CPh2 (8). Compounds 1 and 2 react with HCl to give the five-coordinate allenylrhodium(III) complexes [RhCl₂{CH=C=C(Ph)R}(P*i*Pr₃)₂] (**10**, **11**). An unusual [C₃ + C₂ + P] coupling process takes place upon treatment of 1 with terminal alkynes HC≡CR', leading to the formation of the η^3 -allylic compounds [RhCl{ η^3 -anti-CH(PiPr₃)C(R')C=C=CPh₂{(PiPr₃)] [R' = Ph (12), p-Tol (13), SiMe₃ (14)]. From 12 and RMgBr the corresponding phenyl and vinyl rhodium(I) derivatives 15 and 16 have been obtained. The previously unknown unsaturated ylide *i*Pr₃PCHC(Ph)=C=C=CPh₂ (**17**) was generated from 12 and CO. A $[C_3 + P]$ coupling process occurs on treatment of the rhodium allenylidenes 1, 2, and trans-[RhCl{=C=C=C(p-Anis)₂}(PiPr₃)₂] (20) with either Cl₂ or PhICl₂, affording the ylide-rhodium(III) complexes $[RhCl_3\{C(PiPr_3)C=C(R)R'\}(PiPr_3)]$ (21–23). The butatrienerhodium(I) compounds trans- $[RhCl_{\eta^2}-H_2C=$ C=C=C(R)R' (PiPr₃)₂ (28-31) were prepared from 1, 20, and trans-[RhCl{=C=C(Ph)R}(PiPr₃)₂] [R = CF₃ (26), tBu (27)] and diazomethane; with the exception of 30 (R = CF₃, R' = Ph), they thermally rearrange to the isomers trans-[RhCl{ η^2 -H₂C=C=C(R)R'{(PiPr_3)_2}] (32, 33, and syn/anti-34). The new 1,1-disubstituted butatriene $H_2C=C=C=C(tBu)Ph$ (35) was generated either from 31 or 34 and CO. The iodo derivatives trans-[Rhl(η^2 -H₂C=C=C=CR₂)(PiPr₃)₂] [R = Ph (38), p-Anis (39)] were obtained by an unusual route from 1 or 20 and CH₃I in the presence of KI. While the hydrogenation of 1 and 26 leads to the allenerhodium(I) complexes trans-[RhCl{ η^2 -H₂C=C=C(Ph)R}(PiPr_3)₂] (40, 41), the thermolysis of 1 and **20** produces the rhodium(I) hexapentaenes trans-[RhCl(η^2 -R₂C=C=C=C=C=C=CR₂)(PiPr₃)₂] (44, 45) via C-C coupling. The molecular structures of 3, 7, 12, 21, and 28 have been determined by X-ray crystallography. (Abbreviations used: p-Tol = p-tolyl, 4-C₆H₄CH₃; p-Anis = p-anisyl, 4-C₆H₄OCH₃.)

Introduction

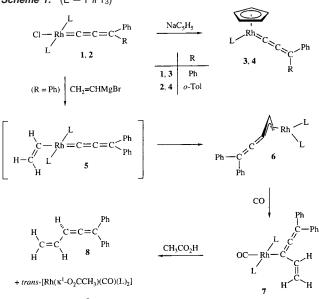
In the context of our investigations on metallacumulenes of the general composition *trans*-[RhCl{=(C=)_nCRR'}(PiPr_3)₂] (n = 1-4), we recently described the preparation of the corresponding rhodium allenylidenes *trans*-[RhCl(=C=C=CRR')-(PiPr_3)₂] using propargylic alcohols or propargylic chlorides as precursors for the coordinated C₃ unit.¹ After we found that the chloride in these complexes cannot only be replaced by other halides but also by pseudohalides such as OCN⁻, SCN⁻, N₃⁻ and even by hydroxide and related O-donor ligands,^{2,3} we became interested to find out whether similar substitution reactions could occur with C-donors as well. From work in our laboratory we already knew that the related rhodium vinylidenes *trans*-[RhCl(=C=CHR)(PiPr₃)₂] react with Grignard reagents R'MgX to give the substitution products *trans*-[Rh(R')(=C=CHR}(PiPr₃)₂], which for R' = CH₃ and CH=CH₂ rearrange, even in the absence of a Lewis base, by intramolecular C-C coupling to yield η^3 -allyl and η^3 -butadienyl rhodium compounds.⁴

In this paper we report that the reactivity of the rhodium allenylidenes toward carbanions in some cases is analogous and in some cases different from that of the vinylidene counterparts.

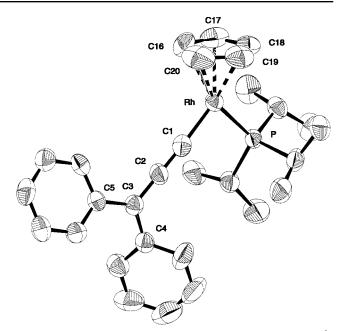
 ⁽a) Werner, H.; Rappert, T. Chem. Ber. 1993, 126, 669–678.
 (b) Werner, H.; Rappert, T.; Wiedemann, R.; Wolf, J.; Mahr, N. Organometallics 1994, 13, 2721–2727.

^{(2) (}a) Werner, H.; Wiedemann, R.; Laubender, M.; Wolf, J.; Windmüller, B. *Chem. Commun.* **1996**, 1413–1414. (b) Werner, H.; Wiedemann, R.; Laubender, M.; Windmüller, B.; Wolf, J. *Chem. Eur. J.* **2001**, *7*, 1959– 1967.

 ^{(3) (}a) Laubender, M.; Werner, H. Angew. Chem. 1998, 110, 158–160; Angew. Chem., Int. Ed. Engl. 1998, 37, 150–152. (b) Laubender, M.; Werner, H. Chem. Eur. J. 1999, 5, 2937–2946.


^{(4) (}a) Wiedemann, R.; Steinert, P.; Schäfer, M.; Werner, H. J. Am. Chem. Soc. 1993, 115, 9864–9865. (b) Wiedemann, R.; Wolf, J.; Werner, H. Angew. Chem. 1995, 107, 1359–1361; Angew. Chem., Int. Ed. Engl. 1995, 34, 1244–1246. (c) Werner, H.; Wiedemann, R.; Steinert, P.; Wolf, J. Chem. Eur. J. 1997, 3, 127–137.

Moreover, we illustrate that the allenylidene ligand can be converted to allenes and, by two different pathways, also to 1,1-disubstituted butatrienes $CH_2=C=C=CRR'$, which because of their lability are otherwise hardly accessible. The most surprising result, however, is that the starting materials with a Rh=C=C=CRR' chain undergo upon treatment with either 1-alkynes or phenyliodoniumdichloride an intramolecular C-P coupling reaction, thereby generating novel highly unsaturated phosphorus ylides unknown in the free state. Some results of these studies have already been communicated.⁵


Results and Discussion

Half-Sandwich-Type Allenylidenerhodium Complexes. To test the possibility of replacing the chloro ligand in compounds of the general composition *trans*-[RhCl(=C=C=CRR'}($PiPr_3$)₂] by carbanions, first the reactivity of **1** and **2** toward sodium cyclopentadienide was investigated. Both starting materials, if mixed with *solid* NaC₅H₅ and treated dropwise with THF, react at room temperature to give the half-sandwich-type complexes **3** and **4** in good yield (Scheme 1). They were isolated as green

Scheme 1. $(L = PiPr_3)$

solids that are only moderately air-sensitive and readily soluble in most common organic solvents. The ¹³C NMR spectra of **3** and **4** display three characteristic signals in the low-field region at about δ 228, 205–210, and 122 that, based on the different ¹⁰³Rh–¹³C and ³¹P–¹³C coupling constants, are assigned to the α -, β -, and γ -carbon atoms of the allenylidene chain. The ¹H NMR spectrum of **3** exhibits only one set of resonances for the protons of the two phenyl groups, indicating that on the NMR time scale (in solution at room temperature) the rotation around the Rh–C_{allenylidene} bond is not significantly hindered. It should be mentioned that the vinylidene analogues of **3** and **4** of the general composition [(η ⁵-C₅H₅)Rh(=C=CHR)(PiPr₃)] were also prepared in our laboratory but by a different route.⁶

Figure 1. Molecular diagram of compound **3**. Selected bond distances (Å) and angles (deg): Rh–P, 2.2700(15); Rh–C1, 1.880(6); Rh–C16, 2.237-(6); Rh–C17, 2.253(7); Rh–C18, 2.242(6); Rh–C19, 2.231(7); Rh–C20, 2.198(7); C1–C2, 1.255(7); C2–C3, 1.350(7); C3–C4, 1.466(8); C3–C5, 1.465(7); P–Rh–C1, 89.48(17); Rh–C1–C2, 177.1(5); C1–C2–C3, 176.5(6); C2–C3–C4, 119.3(5); C2–C3–C5, 120.2(5); C4–C3–C5, 120.5(5).

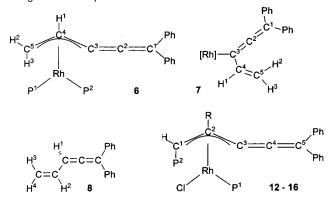
The molecular structure of compound **3** is shown in Figure 1. The molecule possesses the expected two-legged piano-stool configuration with a Rh–C1 bond length of 1.880(6) Å, which is slightly longer (ca. 0.03 Å) compared to the square-planar complex **2**.^{1b} It is almost identical to the bond length in the structurally related cyclopentadienylosmium(II) compound [(η^5 -C₅H₅)OsCl(=C=C=CPh₂)(PiPr₃)].⁷ The two carbon–carbon distances in the RhC₃ chain differ by 0.10 Å, which suggests that besides the usual bond description Rh=C=C=C a second zwitterionic resonance structure has to be taken into consideration.⁸ The Rh=C=C=C moiety is nearly linear, while the bond angles around the γ -carbon atom C3 are, as expected, about 120°.

Coupling of an Allenylidene and a Vinyl Group. Following the protocol for the preparation of the vinylidene complexes *trans*-[Rh(R')(=C=CHR)(P*i*Pr₃)₂] (R' = CH₃, CH=CH₂, C=CPh, C₆H₄R),⁴ the allenylidene compound **1** was treated under the same conditions with the corresponding Grignard reagent R'MgBr. However, in all cases, with the exception of R' = CH=CH₂, a mixture of products was obtained that could not be separated by fractional crystallization or chromatographic techniques.

The attempt to prepare the vinylrhodium(I) derivative *trans*-[Rh(CH=CH₂)(=C=C=CPh₂)(PiPr₃)₂] led to a surprising result. Treatment of the starting material **1** with CH₂=CHMgBr in toluene/THF at -40 °C resulted not only in the substitution of chloride by the C-nucleophile but also by coupling of the vinyl and the allenylidene units to form a η^3 -pentatrienyl ligand

⁽⁵⁾ Wiedemann, R.; Steinert, P.; Gevert, O.; Werner, H. J. Am. Chem. Soc. 1996, 118, 2495–2496.

 ^{(6) (}a) Wolf, J.; Werner, H.; Serhadli, O.; Ziegler, M. L. Angew. Chem. 1983, 95, 428–429; Angew. Chem., Int. Ed. Engl. 1983, 22, 414–415. (b) Werner, H.; Wolf, J.; Garcia Alonso, F. J.; Ziegler, M. L.; Serhadli, O. J. Organomet. Chem. 1987, 336, 397–411.

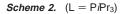

⁽⁷⁾ Crochet, P.; Esteruelas, M. A.; López, A.; Ruiz, N.; Tolosa, J. I. Organometallics 1998, 17, 3479–3486.

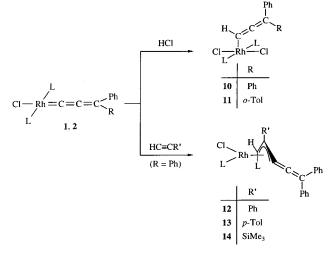
^{(8) (}a) Bruce, M. I. Chem. Rev. 1991, 91, 197–257. (b) Le Bozec, H.; Dixneuf, P. H. Russ. Chem. Bull. 1995, 44, 801–812. (c) Werner, H. Chem. Commun. 1997, 903–910. (d) Bruce, M. I. Chem. Rev. 1998, 98, 2797–2858. (e) Cadierno, V.; Gamasa, M. P.; Gimeno, J. Eur. J. Inorg. Chem. 2001, 571–591.

(see Scheme 1). The ¹H spectrum of **6** displays three wellseparated signals for the protons H^1 , H^2 and H^3 of the π -bonded allylic unit at δ 4.79, 3.01, and 2.45, respectively. In agreement with previous data,^{4,9} the resonance for the syn proton H² reveals a considerably smaller ${}^{31}P-{}^{1}H$ coupling constant (almost zero) than that of the anti proton H³ (5.8 Hz). In the ¹³C NMR spectrum of 6, a significant difference in chemical shift for the signals of carbon atoms C^3 and C^5 is observed, indicating that the allylic fragment of the pentatrienyl ligand is unsymmetrically coordinated to the metal center. With regard to the mechanism of formation of 6, we assume that initially the anticipated fourcoordinate species 5 is generated that rapidly rearranges by migratory insertion to give the final product. The reason for the increased lability of 5 compared with the vinylidene counterparts trans-[Rh(CH=CH₂)(=C=CHR)(PiPr₃)₂] (R = tBu, Ph)⁴ could be that the allenvlidene is a weaker π -acceptor ligand than the related vinylidene and therefore less suitable to stabilize the bond between the metal and the trans-disposed vinyl group.^{6,10} We note that upon treatment of $[(\eta^5-C_5Me_5)RuCl (=C=C=CPh_2)(\kappa^1-PiPr_2CH_2CO_2Me)$] with CH₂=CHMgBr also a η^3 -pentatrienyl complex is formed, and again in this case no M-CH=CH₂ intermediate could be detected spectroscopically.11

The reaction of 6 with CO in benzene at 10 °C leads instantaneously to a change of color from red to light yellow and finally to the isolation of yellow, moderately air-sensitive crystals of the carbonylrhodium(I) compound 7 in 65% yield (see Scheme 1). The addition of CO to the metal center is accompanied by a $\pi - \sigma$ conversion of the C₅ unit, possibly via an 18-electron intermediate $[Rh(\eta^3-CH_2CHC=C=CPh_2)(CO)-$ (PiPr₃)₂]. The change in hapticity of the pentatrienyl ligand is clearly indicated by the ¹H NMR spectrum of 7, which exhibits the resonances for the vinyl protons H¹, H², and H³ at significantly lower field (δ 6.84, 5.97, and 5.11) compared to 6. The ¹³C NMR spectrum of 7 displays five signals for the carbon atoms C^1 to C^5 (see Chart 1), of which only that for the metalbonded atom C³ shows a ³¹P-¹³C and a ¹⁰³Rh-¹³C coupling.

Chart 1. Assignment of Protons, Carbon, and Phosphorus Atoms of Ligands in Compounds 6-8 and 12-16




The proposed stereochemistry of 7 was substantiated by a single-crystal X-ray structural analysis (for a molecular diagram

see ref 5). The rhodium is coordinated in a slightly distorted square-planar fashion with the two phosphine ligands in a trans disposition. The allene-like C=C=C chain is linear $(177.5(5)^{\circ})$, with the two vinylic carbon atoms lying in the same plane. The plane containing the C₃ carbons and the ipso-carbon atoms of the phenyl groups is nearly perpendicular to the plane containing the metal and the vinylic carbon atoms, the dihedral angle being 95.5(2)°. The two C–C distances of the linear C_3 chain differ only slightly, which is in agreement with structural data for other transition-metal compounds containing η^1 -allenyl ligands.¹²

The cleavage of the Rh–C σ -bond in 7 by an equimolar amount of acetic acid in benzene proceeds smoothly and gives, besides the acetatorhodium(I) complex 9,¹³ selectively the new vinylallene 8 (see Scheme 1). A characteristic feature of the ¹³C NMR spectrum of **8** is the low-field signal at δ 210.2 for the central C=C=C carbon atom, the position of which is typical for organic allenes.¹⁴

Reactions of Rhodium Allenylidenes with HCl and Terminal Alkynes. In contrast to the iridium(I) compounds trans- $[IrCl{=C=C=C(Ph)R}(PiPr_3)_2]$ (R = tBu, Ph), which react with HCl by oxidative addition to give the octahedral hydridoiridium(III) derivatives trans-[IrHCl₂{=C=C=C(Ph)R}- $(PiPr_3)_2$,¹⁵ treatment of the rhodium(I) precursors 1 and 2 with an equimolar amount of HCl in benzene affords the fivecoordinate allenyl complexes 10 and 11 in nearly quantitative yields (Scheme 2). Typical spectroscopic data of 10 and 11 are

the C=C=C stretching frequency in the IR spectra at about 1880 cm⁻¹, the doublet-of-triplet resonance for the RhCH proton in the ¹H NMR spectra at δ 7.44 (10) or 7.85 (11), and the three signals for the α -, β -, and γ -allenyl carbon atoms in the ¹³C NMR spectra at about δ 69, 114, and 200, respectively. Although the spectroscopic data of 10 and 11 cannot show whether the configuration around the metal center corresponds to a square pyramid or a trigonal bipyramid, we assume, in

^{(9) (}a) Vrieze, K.; Volger, H. C.; van Leeuwen, P. W. N. M. Inorg. Chim. Acta Rev. 1969, 109–129. (b) Hughes, R. P. in Comprehensive Organometallic Chemistry, Wilkinson, G.; Stone, F. G. A.; Abel, E. W., Eds.; 1st ed., Pergamon: Oxford, 1982; Vol. 5, p 492-540.

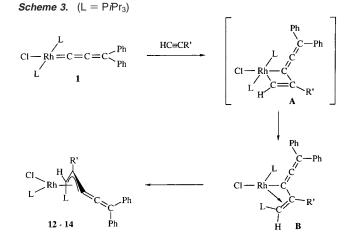
^{(10) (}a) Antonova, A. B.; Ioganson, A. A. Russ. Chem. Rev. 1989, 58, 693-710. (b) Kovacik, I.; Gevert, O.; Werner, H.; Schmittel, M.; Söllner, R. Inorg. Chim. Acta **1998**, 275–276, 435–439.

⁽¹¹⁾ Braun, T.; Meuer, P.; Werner, H. Organometallics 1996, 15, 4075-4077.

^{(12) (}a) Huang, T.-M.; Hsu, R.-H.; Yang, C.-S.; Chen, J.-T.; Lee, G.-H.; Wang, Y. Organometallics **1994**, *13*, 3657–3663. (b) Wouters, J. M. A.; Klein, R. A.; Elsevier: C. J.; Häming, L.; Stam, C. H. Organometallics **1994**, *13*, 4586–4593. (c) Werner, H.; Flügel, R.; Windmüller, B.; Michenfelder, A.; Wolf, J. Organometallics 1995, 14, 612–618.
 (13) (a) Ohgomori, Y.; Yoshida, S.; Watanabe, Y. J. Chem. Soc., Dalton Trans.

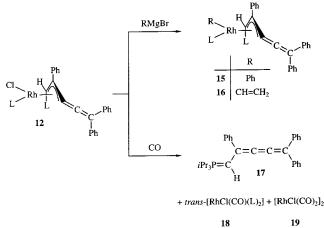
^{1987, 2969-2974. (}b) Schäfer, M.; Wolf, J.; Werner, H. J. Organomet. Chem. 1995, 476, 85-91.

Munson, J. W. The Chemistry of Ketenes, Allenes and Related Compounds; Patai, S., Ed.; Wiley: New York, 1980; Vol. 1, Chapter 5. (15) Ilg, K.; Werner, H. *Chem. Eur. J.* **2001**, 7, 4633–4639.


analogy to [RhHCl₂(PiPr₃)₂],¹⁶ that a square pyramidal geometry is preferred. We note that the ¹H NMR spectrum of 11 displays two signals (with a small difference in chemical shift) for the protons of the diastereotopic methyl groups of the isopropyl units, which is in agreement with the chirality of the molecule.

The reaction of the starting material 1 with the weakly acidic terminal alkynes HC=CR' (R' = Ph, p-Tol, SiMe₃) proceeds by an unusual route. If a solution of 1 and the alkyne in benzene was stirred for 20 h (R' = Ph, *p*-Tol) or 14 days ($R' = SiMe_3$) at 10 °C, a gradual change of color from red to bright red occurred and, after removal of the solvent, the rhodium(I) complexes 12-14 were isolated in good to excellent yields. Both the elemental analyses as well as the mass spectrum of 12 confirmed that formally 1:1 adducts of 1 and the alkyne were formed that according to the ³¹P NMR spectra contained two distinctly different PiPr₃ groups. The two ³¹P NMR signals at about δ 48–53 and 38–40, corresponding to the AM part of an AMX pattern, show ¹⁰³Rh-³¹P coupling constants of ca. 180 and 4 Hz, which indicates that only one of the phosphines is coordinated to the rhodium. The nonequivalence of the PiPr₃ units is also reflected in the ¹H NMR spectra of 12-14 in which four different resonances for the PCHCH₃ protons are observed.

The X-ray crystal structure analysis of 12 (for a molecular diagram see ref 5) confirmed that indeed only one of the phosphines is coordinated to the metal center while the other is part of a π -bonded unsaturated ylide. This novel ylide is built up from the allenylidene, the alkyne, and one $PiPr_3$ group. The PC₅ ligand is coordinated like a π -allyl unit, similarly to the C₅ moiety in compound 6. The unsymmetric coordination is illustrated by the three Rh-C bond lengths, which differ by ca. 0.15 Å. Since the distance between rhodium and the C-bonded phosphorus atom is 3.367(1) Å, a direct interaction between these two atoms can be excluded. The P-C bond of the PC₅ ligand is significantly shorter than a P–C single bond but quite similar to that of $[RhCl{\eta^3-anti-CH(PiPr_3)C(Ph)} =$ O}(P*i*Pr₃)] (1.799(4) Å)¹⁷ and of metal-substituted ylides.¹⁸ Both the C–C distances and the C–C–C bond angle of the π -allylic moiety are nearly identical to those of the π -benzyl complex $[Rh(\eta^3-CH_2C_6H_5)(PiPr_3)_2]$ that was prepared from the dimer 24 (see Scheme 6) and C₆H₅CH₂MgCl.¹⁹


The proposed mechanism for the formation of compounds 12-14 is outlined in Scheme 3. We assume that in the initial step of the reaction a [2+2]-cycloaddition of the alkyne to the Rh=C bond of the RhC₃ chain to give intermediate A takes place, which is followed by a migration of one phosphine ligand from the metal to the RhCH carbon atom. Although the postulated intermediate **B** (like the product) is a 16-electron rhodium(I) species, the π -allylic isomer seems to be energetically preferred. We note that, to the best of our knowledge, there is no precedence for the metal-assisted C-C-P coupling process leading to the ligand system found in complexes 12-14.

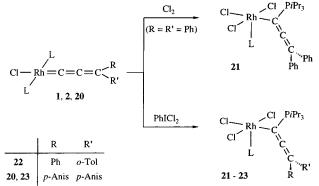
- (16) Harlow, R. L.; Thorn, D. L.; Baker, R. T.; Jones, N. L. Inorg. Chem. 1992, 31.993-997
- (17) Werner, H.; Mahr, N.; Frenking, G.; Jonas, V. Organometallics 1995, 14, 619-625.
- (18) Inter alia: (a) Fachin, G.; Bertani, R.; Zanotto, L.; Galligaris, M.; Nardin, G. J. Organomet. Chem. 1989, 366, 409-420. (b) Werner, H.; Schippel, O.; Wolf, J.; Schulz, M. J. Organomet. Chem. 1991, 417, 149-162
- (19) Werner, H.; Schäfer, M.; Nürnberg, O.; Wolf, J. Chem. Ber. 1994, 127, 27 - 38.

Like in the rhodium vinylidenes trans-[RhCl(=C=CHR)- $(PiPr_3)_2$], the chloro ligand of 12 can easily be displaced by a phenyl or a vinyl group. Treatment of 12 with C₆H₅MgBr or CH₂=CHMgBr in benzene/ether or benzene/THF results in the formation of the substitution products 15 and 16 (Scheme 4),

Scheme 4. $(L = PiPr_3)$

which are isolated as black solids in 65-70% yield. As far as the π -bonded allylic ligand *anti-CH*(P*i*Pr₃)*C*(Ph)=*C*=C=CPh₂ is concerned, the ¹H, ¹³C, and ³¹P NMR data of 15 and 16 are quite similar to those of 12 and thus deserve no further comment.

The free ylide 17, the preparation of which as far as we know has not been reported as yet, can be generated on treatment of 12 with CO in benzene at 10 °C. The rhodium-containing products are 18²⁰ and the well-known dimer 19.²¹ Ylide 17 was isolated upon extraction of the product mixture with pentane as a violet solid and characterized by ¹H, ¹³C, and ³¹P NMR spectroscopic data. The influence of the butatrienyl substituent on the electronic properties of the ylide carbon is reflected by the signal of the P=CH proton, which appears at δ 3.05 and is shifted ca. 4 ppm downfield compared with the $P=CH_2$ resonance of *i*Pr₃PCH₂.²²


Generation of Phosphacumulenes via Oxidatively Induced **C–P Coupling.** The reaction of the starting material **1** with

^{(20) (}a) Busetto, C.; D'Alfonso, A.; Maspero, F.; Perego, G.; Zazzetta, A. J. Chem. Soc., Dalton Trans. 1977, 1828-1834. (b) Wang, K.; Rosini, G. P. Nolan, S. P.; Goldman, A. S. J. Am. Chem. Soc. 1995, 117, 5082-5088.

⁽²¹⁾ McCleverty, J. A.; Wilkinson, G. Inorg. Synth. 1968, 8, 211–214.
(22) Köster, R.; Simic, D.; Grassberger, M. A. Justus Liebigs Ann. Chem. 1970, 739, 211–219.

chlorine in the molar ratio of 1:1 in THF/hexane under the exclusion of light proceeds by oxidative addition but does not give, in contrast to the analogous reactions of the carbonyl complexes *trans*-[RhCl(CO)(PR₃)₂] (PR₃ = PMe₃, PEt₃, PnBu₃, PEt₂Ph, PPh₃) with Cl₂,²³ the expected trichlororhodium(III) compound [RhCl₃(=C=C=CPh₂)(PiPr₃)₂]. The five-coordinate complex 21 is formed instead, which is equally obtained upon treatment of 1 with PhICl₂ in dichloromethane at -60 °C. By both routes the yield of 21, being a red air-sensitive solid, is virtually quantitative (Scheme 5). The preparation of 22 and

Scheme 5. $(L = PiPr_3)$

23 from 2 and 20 as precursors and PhICl₂ as the oxidizing reagent occurs analogously. The ¹H, ¹³C, and ³¹P NMR spectra of 21-23 display two completely different sets of signals for the hydrogen, carbon, and phosphorus atoms of the PiPr₃ groups and, since only one of the ³¹P NMR resonances shows a strong ¹⁰³Rh-³¹P coupling, indicate that one of the phosphines is not linked to rhodium. The most typical feature of the ¹³C NMR spectra of 21–23 is the resonance at δ 75–76 for the metalbonded carbon of the phosphacumulene,²⁴ which is split into a doublet-of-doublets, due to coupling with rhodium and two different phosphorus atoms.

The proposed structure of 21 has been confirmed by an X-ray crystal structure analysis. The molecular diagram (Figure 2) reveals a square-pyramidal geometry around the metal center with the coordinated triisopropylphosphine in the apical position. The rhodium atom is situated somewhat above the basal plane manifested by the bending of the C1-Rh-Cl1 (165.43(1)°) and Cl2-Rh-Cl3 (165.47(4)°) axes. The bond length Rh-C1 is nearly identical to that in *trans*- $[Rh{\eta^1-C(CH=CH_2)=CHPh}]$ - $(CO)(PiPr_3)_2$] (2.088(5) Å)⁴ and *trans*-[Rh{ η^1 -C(C=CCO₂Me) =CHCO₂Me $(CO)(PiPr_3)_2$] (2.099(4) Å)²⁵ but slightly shorter than in the η^1 -pentatrienyl complex 7. As expected, the C1-C2–C3 chain is linear $(178.3(4)^\circ)$, whereas the sum of the bond angles around C1 is almost exactly 360°. The two planes containing the substituents at C^1 (Rh and P2) and C^3 (ipso-carbons of C_6H_5) are orthogonal to each other (the dihedral angle being $89.7(2)^{\circ}$), in agreement with the allene-type structure of the molecule. Phosphacumulene ligands related to that found in 21 are known from $[(\eta^5-C_5H_5)Mn\{C(PPh_3)=C=CPh_2\}(CO)_2]$ and

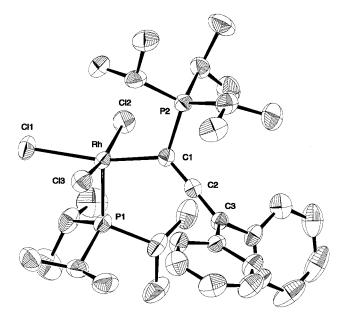


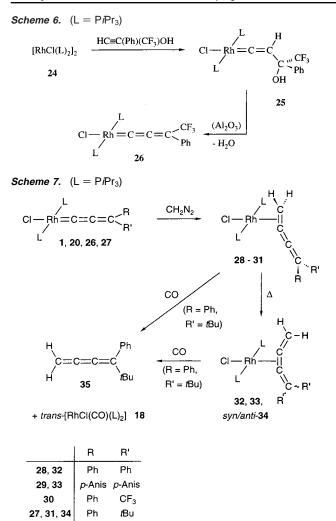
Figure 2. Molecular diagram of compound 21. Selected bond distances (Å) and angles (deg): Rh-C1, 2.089(3); Rh-P1, 2.251(1); Rh-Cl1, 2.425-(1); Rh-Cl2, 2.321(1); Rh-Cl3, 2.339(1); C1-C2, 1.297(5); C2-C3, 1.328(5); C1-P2, 1.817(3); C1-Rh-P1, 102.73(8); C1-Rh-Cl1, 165.44-(8); C1-Rh-Cl2, 90.98(8); C1-Rh-Cl3, 86.08(8); P1-Rh-Cl1, 91.74-(4); P1-Rh-Cl2, 90.65(5); P1-Rh-Cl3, 103.88(4); Cl1-Rh-Cl2, 90.47-(4); Cl1-Rh-Cl3, 88.90(4); Cl2-Rh-Cl3, 165.47(3); Rh-C1-P2, 114.3(1); Rh-C1-C2, 130.1(2); P2-C1-C2, 114.7(3); C1-C2-C3, 178.2(3).

 $[Cr{C(PPh_3)=C=CiPr_2}(CO)_5]$, but in these cases they have been generated by attack of free triphenylphosphine on allenylidene complexes.26

The mechanism of formation of 21-23 seems to be straightforward. We assume that the initial step of the reaction consists of the anticipated oxidative addition of chlorine at rhodium to form the six-coordinate species [RhCl₃(=C=C=CPh₂)(PiPr₃)₂]. In this intermediate, the steric crowding around the metal center caused by the three chlorides and in particular by the two bulky phosphine ligands leads to a 1,2-shift of one PiPr₃ group from the metal to the α -carbon of the allenylidene, yielding a molecule in which the two PiPr₃ units are farther apart than in the intermediate. In this context we note that while the rhodium-(II) compound *trans*-[RhCl₂($PiPr_3$)₂] is known, ^{16,27} our attempts to prepare a rhodium(III) complex of the composition [RhCl₃-(PiPr₃)₂] remained unsuccessful.

Rhodium Complexes with 1,1-Disubstituted Butatrienes as Ligands. After we found that the vinylidene compounds [$(\eta^5$ - C_5H_5 (=C=CHR)(PiPr_3)] react with diazomethane to form the allene complexes $[(\eta^5-C_5H_5)Rh(\eta^2-CH_2=C=CHR)(PiPr_3)]$ (R = H, Me, Ph)²⁸ we became interested to find out whether a similar C-C coupling process would take place upon treatment of the allenvlidene rhodium derivatives trans-[RhCl(=C=C= CRR' (PiPr₃)₂] with CH_2N_2 . In addition to 1, 20, and 27 (see Scheme 7), we also prepared the new precursor 26 having, in contrast to the structurally related starting materials, a strong electron-withdrawing substituent at the terminal carbon of the allenylidene unit.

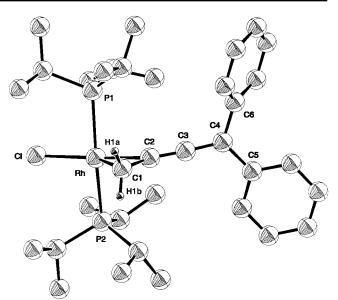
^{(23) (}a) Heck, R. F. J. Am. Chem. Soc. 1964. 86, 2796-2799. (b) Chatt, J.: Shaw, B. L. J. Chem. Soc. A 1966, 1537–1542. (c) Browning, J.; Goggin, P. L.; Goodfellow, R. J.; Norton, M. G.; Rattray, A. J. M.; Taylor, B. F.; Mink, J. J. Chem. Soc., Dalton Trans. 1977, 2061-2067.


⁽²⁴⁾ For a review on phosphacumulenes: Bestmann, H. J. Angew. Chem. 1977,

^{89, 361–376;} Angew. Chem., Int. Ed. Engl. **1977**, 16, 349–367. Schäfer, M.; Mahr, N.; Wolf, J.; Werner, H. Angew. Chem. **1993**, 105, 1377–1379; Angew. Chem., Int. Ed. Engl. **1993**, 32, 1315–1318. (2.5)

^{(26) (}a) Kolobova, N. E.; Ivanov, L. L.; Zhvanko, O. S.; Khitrova, O. M.; Batsanov, A. S.; Struchkov, Y. T. J. Organomet. Chem. 1984, 265, 271-281. (b) Berke, H.; Härter, P.; Huttner, G., Zsolnai, L. Z. Naturforsch. B 1981, 36, 929-937


Rappert, T.; Wolf, J.; Schulz, M.; Werner, H. Chem. Ber. 1992, 125, 839-(27)841


⁽²⁸⁾ Wolf, J.; Zolk, R.; Schubert, U.; Werner, H. J. Organomet. Chem. 1988, 340, 161-178.

The synthetic procedure to obtain 26 is shown in Scheme 6. Treatment of the dimer 24^{29} with the alkynol in ether in the presence of NEt₃ led in the first step to the formation of the vinvlidene compound 25, which after column chromatography (with *neutral* Al₂O₃) was isolated as a blue solid in 91% yield. Although we assume that the π -alkyne complex *trans*-[RhCl- $\{\eta^2$ -HC=CC(Ph)(CF₃)OH $\{(PiPr_3)_2\}$ is initially formed,¹ this intermediate is probably very labile and rearranges rapidly to the vinylidene isomer. The conversion of 25 to the rhodium allenylidene 26 occurs by passing a solution of the vinylidene compound in benzene through a column filled with acidic Al₂O₃. During this procedure a change of color from blue to yellowgreen takes place and, if chromatography is continued, the product 26 is eluted in virtually quantitative yield. The IR and NMR spectroscopic data of 26 are similar to those of 27^3 and deserve no further comment.

The reactions of 1, 20, 26, and 27 with excess diazomethane in benzene at room temperature are completed within a few minutes. After removal of the solvent and recrystallization from pentane, the coupling products 28-31 were isolated as red or orange solids, only moderately sensitive to air and water, in 91-96% yield. The proposed structure (see Scheme 7) is particularly supported by the ¹³C NMR spectra, which display four signals between δ 184 and 12 for the carbon nuclei of the

Figure 3. Molecular diagram of compound **28**. Selected bond distances (Å) and angles (deg): Rh-P1, 2.365(1); Rh-P2, 2.355(1); Rh-C1, 2.349-(1); Rh-C1, 2.060(2); Rh-C2, 2.063(2); C1-C2, 1.408(3); C2-C3, 1.272-(3); C3-C4, 1.335(3); P1-Rh-P2, 166.45(2); P1-Rh-C1, 88.16(3); P1-Rh-C1, 96.70(7); P1-Rh-C2, 90.56(6); P2-Rh-C1, 87.42(2); P2-Rh-C1, 94.35(7); P2-Rh-C2, 92.89(6); C1-Rh-C1, 144.36(7); C1-Rh-C2, 175.65(6); C1-Rh-C2, 39.96(9); Rh-C1-C2, 70.1(1); Rh-C2-C1, 69.9-(1); C1-C2-C3, 144.7(2); C2-C3-C4, 174.8(2).

butatriene ligand. Two of these signals show a relatively large ¹⁰³Rh–¹³C coupling and are therefore assigned to the two carbon atoms of the C₄ unit bonded to the metal. The chemical shift of the CH₂ resonance of **28** at δ 13.0 as well as the ¹*J*(CH) coupling constant of 161.4 Hz indicates the predominant sp³ character of this C atom, which implies that the bonding between rhodium and the C=CH₂ fragment of the butatriene is related to that of a metallacyclopropane. Since the ¹H NMR spectra of **28** and **29** exhibit two signals and the spectrum of **30** four signals for the PCHCH₃ protons, we assume that in contrast to *trans*-[Rh-(C=CMe)(η^2 -CH₂=C=CH₂)(PiPr₃)₂]³⁰ the rotation of the butatriene ligand around the rhodium–olefin bond in **28–30** is slow on the NMR time scale.

With regard to the formation of the coordinated C_4 cumulene from the rhodium allenylidenes and CH_2N_2 , it is conceivable that the attack of the nucleophilic diazomethane occurs either at the metal or the α -carbon atom of the RhC₃ chain. In the course of their studies on the reactivity of carbene tungsten and rhenium complexes toward RCHN₂, both Casey³¹ and Gladysz³² supposed that the first step in these reactions consists of an attack of the C-nucleophile at the carbene carbon, generating an olefin. Although these authors as well as we have no evidence for an initial C–C interaction, theoretical work seems to be in favor of this proposal.³³

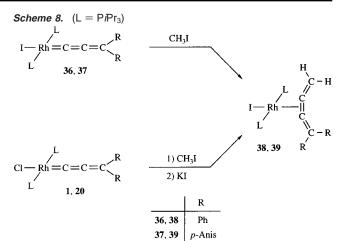
The X-ray crystal structure analysis of **28** (Figure 3) confirmed a distorted square-planar coordination around the metal center with the Cl, Rh, and C1–C4 atoms lying in one plane. Although the C=CH₂ unit is bonded unsymmetrically

⁽³⁰⁾ Schäfer, M. Ph.D. Thesis, Universität Würzburg, 1994.

⁽³¹⁾ Casey, C. P.; Bertz, S. H.; Burkardt, T. J. Tetrahedron Lett. 1973, 12, 1421– 1424.

⁽³²⁾ Wang, Y.; Gladysz, J. A. Chem. Ber. 1995, 128, 213-220.

 ^{(32) (}a) Schilling, B. E. R.; Hoffmann, R.; Lichtenberger, D. L. J. Am. Chem. Soc. 1979, 101, 585–591. (b) Kostic, N. M.; Fenske, R. F. Organometallics 1982, 1, 974–982. (c) Esteruelas, M. A.; Gómez, A. V.; López, A. M.; Modrego, J.; Onate, E. Organometallics 1997, 16, 5826–5835.


to rhodium, as is shown by the linearity of the Cl-Rh-C2 axis (175.65(6)°), the distances Rh-C1 and Rh-C2 are nearly identical. This is in contrast to the structurally similar compound *trans*-[RhCl(η^2 -CH₂=C=CHCO₂Et)(PiPr₃)₂], in which the Rh-C1 and Rh-C2 bond lengths are 2.120(5) and 1.991(5) Å.³⁴ The P1-Rh-P2 axis is somewhat bent (166.45(2)°) and directed toward the chloride, which is probably due to the steric requirements of the isopropyl and phenyl groups.

The butatrienerhodium(I) compounds 28, 29, and 31 are thermally labile and upon heating in toluene at 80-95 °C rearrange to the thermodynamically more stable complexes 32-34 (see Scheme 7). The isomerization can easily be followed by a change of color from red to yellow. In the case of 34, a mixture of two isomers is formed that differ in the relative position of the phenyl and tert-butyl groups to the metal center. If the rearrangement of **31** is monitored by ³¹P NMR spectroscopy, a ratio syn-34:anti-34 of 2:1 is observed initially. After 6 h in toluene at 95 °C, the ratio changes to 10:1. However, even after stirring for 12 h, a complete conversion of anti-34 to syn-34 does not occur. Nevertheless, compound syn-34 has been isolated analytically pure upon fractional crystallization from acetone and, by comparison of the ¹H NMR data with those of anti-34, identified as the isomer in which the phenyl group at C⁴ is directed toward the metal. The assignment of the resonances for the H_{endo} and H_{exo} protons at C¹ follows from the work of Gladysz et al., who assigned the signals of the CH2 protons of the allene complex $[(\eta^5-C_5H_5)Re(\eta^2-CH_2=C=CH_2)-$ (NO)(PPh₃)]BF₄ on the basis of NOE measurements.³⁵ Owing to the presence of an unsymmetrical butatriene, the ¹³C NMR spectra of 32, 33, and cis-34 display four resonances in the region between δ 144 and 97 for the carbon atoms of the C₄ chain. Two of these signals show a ³¹P-1³C coupling and thus belong to the butatriene C atoms linked to the metal. We note that in all of the previously described 1,1,4,4-tetrasubstituted butatrienerhodium(I) compounds trans-[Rh(η^2 -R₂C=C=C= CR'_{2} (PPh₃)₂], which were prepared from [RhCl(PPh₃)₃] and corresponding butatrienes,³⁶ the central C=C bond is coordinated to the metal. The linkage of a terminal R₂C=C bond not to rhodium(I) but to platinum(0) was recently reported by Stang.37

Similarly to the allylic type complex 12, compounds 28-31 and 32-34 also react rapidly with CO in benzene at room temperature to yield the carbonyl complex 18 by ligand exchange. Of the butatrienes formed in these processes, those with $C(aryl)_2$ and $C(Ph)CF_3$ as the terminal unit are rather labile and undergo secondary reactions. The hitherto unknown cumulene 35 was characterized by GC/MS and by comparison of the spectroscopic data with those of other butatrienes.^{38,39}

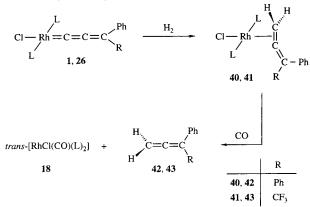
Ouite unexpectedly, there is also an alternative route to convert a metal-bonded allenylidene moiety into a butatriene ligand (see Scheme 8). During attempts to oxidatively add CH₃I to the metal center of the rhodium(I) complexes 1 and 20,

- (34) Werner, H.; Schneider, D.; Schulz, M. J. Organomet. Chem. 1993, 451, 175 - 182.
- (35) Pu, J.; Peng, T.-S.; Arif, A. M.; Gladysz, J. A. Organometallics 1992, 11, 3232-3241.
- (36) (a) Hagelee, L.; West, R.; Calabrese, J.; Norman, J. J. Am. Chem. Soc. (d) Haglee, 1963, 14, endances, 5, 16 main, 5, 5, 16, 16, 16, 17, 1979, 101, 4888–4892. (b) Stang, P. J.; White, M. R.; Maas, G. Organometallics 1983, 2, 720–725.

thereby anticipating that they may react analogously to the Vaska-type compounds trans-[IrCl(CO)(PR₃)₂] with methyl iodide,⁴⁰ we observed that CH₃I can behave as a CH₂ source. While in the absence of a basic substrate the reaction of 1 with methyl iodide proceeds very slowly and gives a mixture of products, the butatriene complex 38 is formed as the major species together with 32 in the presence of Na₂CO₃. Subsequent treatment of the reaction mixture with KI yields 38 nearly quantitatively. The bis(p-anisyl) derivative 20 behaves similarly and affords 39. Both compounds 38 and 39 are also obtained by treating the allenylidene(iodo)rhodium(I) complexes 36 and 37 with CH₃I and Na₂CO₃. Regarding the mechanism of formation of 38 and 39, we assume that in the initial step the anticipated oxidative addition of methyl iodide at the rhodium center takes place, which is followed by an insertion of the allenylidene unit into the Rh-CH3 bond. The so-formed intermediate with the $Rh-C(CH_3)=C=CPh_2$ linkage then reacts by a β -H shift to give an octahedral butatriene(hydrido)rhodium-(III) species, which upon reductive elimination of HI or HCl (the latter being facilitated by Na₂CO₃) generates the final product. There is precedence for the first two steps (oxidative addition and methyl migration) insofar as both we⁴¹ and Fryzuk et al.42 found that the vinylidene compounds trans-[IrCl(=C= CH_2)(PiPr_3)₂] and [Ir(=C=CH_2){ κ^3 -N(SiMe_2CH_2PPh_2)_2] react with methyl iodide to give the vinyl complexes [IrCl(I)- $\{C(CH_3)=CH_2\}(PiPr_3)_2\}$ and $[IrI\{C(CH_3)=CH_2\}\{\kappa^3-N(SiMe_2-K_3)=CH_2\}$ $CH_2PPh_2)_2$], respectively. However, in these cases a subsequent β -H shift does not occur.

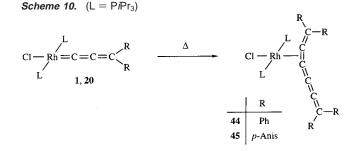
The assumption that both terminal hydrogen atoms of the allenylidene ligand in 38 stem from the methyl iodide has been confirmed by the preparation of $38-d_2$ from 36 and CD₃I. Both substrates react in acetone/THF in the presence of Na₂CO₃ to give **38**- d_2 as a yellow solid in 73% yield. While the ¹H NMR spectrum of **38**- d_2 displays no signals in the region around δ 4.5–5.5, the ²H NMR spectrum exhibits two resonances at δ 5.35 and 4.86 assigned to the exo- and endo-D atoms of the =CD₂ group.

Formation of Allenes and Hexapentaenes from Rhodium Allenylidenes as Precursors. The allenylidene ligand of both 1 and 26 can be converted not only to a butatriene but also to


⁽⁴⁰⁾ Review: Collman, J. P.; Roper, W. R. Adv. Organomet. Chem. 1968, 7, 54-94.

⁽⁴¹⁾ Höhn, A.; Werner, H. J. Organomet. Chem. 1990, 382, 255-277.

⁽⁴²⁾ Fryzuk, M. D.; Huang, L.; McManus, N. T.; Paglia, P.; Rettig, S. J.; White, G. S. Organometallics **1992**, *11*, 2979–2990.


an allene. The reaction of 1 with H_2 in benzene at room temperature is rather slow, but after 40 h the four-coordinate rhodium(I) complex 40 is quantitatively formed (see Scheme 9). In contrast, compound 26 reacts significantly faster with H_2 and affords after 30 min (benzene, 25 °C) the corresponding product 41. Quite remarkably, under the chosen conditions no hydrogenation of the allene ligand occurs. Only after increasing the time of the reaction to 10 days and raising the temperature to 60 °C is the formation of a new rhodium complex observed. It is, according to the NMR data, the chloro(dihydrido) derivative [RhH₂Cl(PiPr₃)₂].^{16,29} Since the ¹H NMR spectra of 40 and 41 display only one signal for the CH₂ protons, we assume that the unsubstituted double bond of the allene is coordinated to the metal center. A slippage of the $[RhCl(PiPr_3)_2]$ fragment along the axis of the cumulene, as has been observed for some allene iron and platinum complexes,^{43,44} could not be detected.

Scheme 9. $(L = P_i Pr_3)$

In the same way as for **31** and **34**, treatment of **40** and **41** with CO in benzene at 10 °C leads to a replacement of the olefinic ligand. While 1,1-diphenylallene **42** is known,⁴⁵ the CF₃-substituted derivative **43** has not been reported as yet; it has been characterized by NMR spectroscopy. Typical features are the quartet for the CH₂ protons in the ¹H NMR at δ 4.75, the three resonances for the α -, β -, and γ -carbon atoms of the C₃ chain in the ¹³C NMR at δ 83.1, 102.0, and 210.2 (the two latter showing a ¹³C-¹⁹F coupling), and the singlet at δ -60.7 in the ¹⁹F NMR spectrum. The metal-containing product of the reactions of **40** and **41** with CO is the carbonyl complex **18**.

Not only the hydrogenation but also the thermolysis of the starting materials **1** and **20** leads to the cleavage of the Rh=C bond. After stirring of a solution of **1** or **20** in toluene at 95 °C for 5 days, besides the generation of free $PiPr_3$, the formation of the hexapentaene complexes **44** and **45** is observed (Scheme 10). Both are bright red, slightly air-sensitive solids that are readily soluble in dichloromethane, but less soluble in pentane and ether. Compound **44** is known and has been recently prepared in our laboratory by treatment of *trans*-[Rh(C=CCPh₂-OH)(=C=CHCPh₂OH)(PiPr₃)₂] with acidic alumina.⁴⁶ The ¹³C NMR spectrum of **45** displays, similarly to that of **44**, six resonances for the C atoms of the C₆ unit, of which two at δ

128.0 and 113.4 show a relatively large ¹⁰³Rh–¹³C coupling and are thus assigned to the carbons linked to rhodium. The assumption that the $C_\beta - C_\gamma$ and not the central $C_\gamma - C_\delta$ bond is coordinated to the metal center is supported by the X-ray crystal structure analysis of 44.⁴⁶ It is worth mentioning that there is precedence for the linkage of two allenylidene fragments to give a tetrasubstituted hexapentaene, as on the heating of $[(\eta^5-C_5H_5)-Mn(=C=C=CtBu_2)(CO)_2]$ to give small quantities of $tBu_2C=$ $C=C=C=C=CtBu_2.^{47}$ A related rhodium-mediated coupling of two vinylidene ligands to generate a coordinated butatriene is also known.⁴⁸

Concluding Remarks

The present investigations have shown that square-planar rhodium allenylidenes of the general composition trans-[RhCl-(=C=C=CRR')(PiPr₃)₂] offer a multifaceted chemistry indeed. They react not only with C-nucleophiles by replacement of the chloride but also undergo reactions with H₂, Cl₂, HCl, methyl iodide, and phenylacetylene to give products in which the allenylidene unit is preserved as part of a newly formed ligand. The potential of the starting materials *trans*-[RhCl(=C=C= $(CRR')(PiPr_3)_2$ (1, 2, 20, 26) to generate cumulenes such as allenes, butatrienes, hexapentaenes, and even unsaturated phosphorus ylides is clearly illustrated by the preparation of compounds 8, 17, 35, and 43, which are hardly accessible on conventional routes. Taking these results into consideration, it seems at least conceivable that rhodium allenvlidenes, possibly formed in situ from appropriate propargylic alcohols following the classical Selegue method,49 can be used as precursors for presently unknown unsaturated hydrocarbons and ylides. On the basis of this idea, current work in our laboratory is focused on reaction conditions that allow the conversion, e.g. of the butatriene complexes 31, 34, or 39, upon treatment with the corresponding alkynol HC=CCR(R')OH to the starting materials 20 and 27 and free butatrienes. Another possibility is that compounds such as 1, 2, 20, 26, and 27, similarly to their iridium counterparts trans-[IrCl(=C=C=CRR')(PiPr₃)₂],¹⁵ may serve as building blocks for the generation of rhodium carbenes and carbynes, the catalytic activity of which is still unexplored.

Experimental Section

All reactions were carried out under an atmosphere of argon by Schlenk techniques. The starting materials 1, ^{1a} 2, ^{1b} 20, ^{3b} 24, ²⁹ 27, ^{3b} 36, and 37^{2b} were prepared as described in the literature. NMR spectra were recorded at room temperature on Bruker AC 200 and Bruker AMX 400 instruments, IR spectra on a IFS 25 FT-IR infrared spectrometer,

⁽⁴³⁾ Ben-Shoshan, R.; Pettit, R. J. Am. Chem. Soc. 1967, 89, 2231–2232.
(44) Vrieze, K.; Volger, H. C.; Praat, A. P. J. Organomet. Chem. 1970, 21, 467–475.

⁽⁴⁵⁾ Beltrame, P.; Pitea, D.; Marzo, A.; SimOnetta, M. J. Chem. Soc. B 1967, 71-75.

⁽⁴⁶⁾ Werner, H.; Wiedemann, R.; Mahr, N.; Steinert, P.; Wolf, J. Chem. Eur. J. 1996, 2, 561–569.

⁽⁴⁷⁾ Berke, H. Angew. Chem. 1976, 88, 684–685; Angew. Chem., Int. Ed. Engl. 1976, 15, 624–625.

⁽⁴⁸⁾ Rappert, T.; Nürnberg, O.; Werner, H. Organometallics 1993, 12, 1359–1364.
(49) Selegue, J. P. Organometallics 1982, 1, 217–218.

and mass spectra on a Finnigan MAT 90 (70 eV) or on a Hewlett-Packard G 1800 GCD instrument. Coupling constants are given in hertz. Abbreviations used: s, singlet; d, doublet; t, triplet; m, multiplet; v, virtual coupling; br, broadened signal; $N = {}^{3}J(PH) + {}^{5}J(PH)$ or ${}^{1}J(PC) + {}^{3}J(PC)$. Melting points were measured by differential thermal analysis (DTA).

Preparation of $[(\eta^5-C_5H_5)Rh(=C=C=CPh_2)(PiPr_3)]$ (3). A mixture of 1 (140 mg, 0.22 mmol) and NaC₅H₅ (39 mg, 0.44 mmol) was treated dropwise with THF (3 mL) under stirring at room temperature. A rapid change of color from red to dark green occurred. After the solution was stirred for 5 min, the solvent was removed in vacuo and the residue extracted with pentane (30 mL). The extract was concentrated to ca. 3 mL and then chromatographed on Al₂O₃ (neutral, activity grade V, height of column 7 cm). With hexane, a green fraction was eluted that was concentrated to ca. 2 mL in vacuo. After storing the solution for 3 d at -78 °C, dark green crystals precipitated that were separated from the mother liquor, washed three times with 1-mL portions of pentane (0 °C), and dried in vacuo. Yield: 69 mg (62%). Mp: 124 °C dec. IR (KBr): v(C=C=C) 1940 cm⁻¹. ¹H NMR (C₆D₆, 200 MHz): δ 7.98 (m, 4H, ortho-H of C₆H₅), 7.28 (m, 2H, para-H of C₆H₅), 7.03 (m, 4H, meta-H of C₆H₅), 5.01 (s, 5H, C₅H₅), 2.09 (m, 3H, PCHCH₃), 1.00 (dd, J(PH) = 13.5, J(HH) = 6.9 Hz, 18H, PCHCH₃). ¹³C NMR (C₆D₆, 50.3 MHz): δ 228.6 (dd, J(RhC) = 71.2, J(PC) = 30.5 Hz, Rh = C = C = C), 208.9 (dd, J(RhC) = 16.5, J(PC) =7.0 Hz, Rh=C=C=C), 148.0 (s, br, ipso-C of C₆H₅), 128.3, 127.8, 126.0 (all s, C_6H_5), 121.1 (dd, br, J(RhC) = 1.9, J(PC) = 5.7 Hz, Rh= C=C=C), 83.7 (dd, J(RhC) = 3.8, J(PC) = 2.5 Hz, C_5H_5), 26.8 (dd, J(RhC) = 1.9, J(PC) = 22.9 Hz, PCHCH₃), 19.9 (s, PCHCH₃). ³¹P NMR (C₆D₆, 81.0 MHz): δ 68.5 (d, J(RhP) = 200.8 Hz). Anal. Calcd for C₂₉H₃₆PRh: C, 67.18; H, 7.00. Found: C, 67.49; H, 6.83.

Preparation of $[(\eta^5-C_5H_5)Rh{=}C=C=C(o-Tol)Ph{}(PiPr_3)]$ (4). This compound was prepared as described for 3 from 2 (176 mg, 0.27 mmol) and NaC₅H₅ (48 mg, 0.54 mmol) to give a dark green solid. Yield: 106 mg (75%). Mp: 146 °C dec. IR (KBr): v(C=C=C) 1930 cm⁻¹. ¹H NMR (CDCl₃, 200 MHz): δ 7.79, 7.11 (both m, 9H, C₆H₄ and C₆H₅), 5.09 (s, 5H, C₅H₅), 2.00 (s, 3H, C₆H₄CH₃), 1.98 (m, 3H, PCHCH₃), 0.92 (dd, *J*(PH) = 13.6, *J*(HH) = 6.9 Hz, 18H, PCHCH₃). ¹³C NMR (CDCl₃, 100.6 MHz): δ 227.2 (dd, J(RhC) = 71.0, J(PC) = 31.0 Hz, Rh=C=C=C), 204.5 (dd, J(RhC) = 16.9, J(PC) = 6.3 Hz, Rh=C=C=C), 146.2 (d, J(PC) = 2.5 Hz, ipso-C of C₆H₅ or C₆H₄), 146.0 (d, J(PC) = 3.8 Hz, ipso-C of C₆H₅ or C₆H₄), 132.9, 129.9, 129.5, 126.5, 125.8, 125.6, 125.4, 124.8 (all s, C₆H₅ and C₆H₄), 122.3 (d, br, J(PC) = 5.3 Hz, Rh=C=C=C), 83.4 (dd, J(RhC) = 2.7, J(PC) = 2.7Hz, C_5H_5), 26.4 (d, J(PC) = 22.9 Hz, $PCHCH_3$), 19.9 (s, $C_6H_4CH_3$), 19.6 (s, PCHCH₃). ³¹P NMR (CDCl₃, 162.0 MHz): δ 66.7 (d, J(RhP) = 197.3 Hz). Anal. Calcd for $C_{30}H_{38}PRh$: C, 67.67; H, 7.19. Found: C, 67.64; H, 7.23.

Preparation of $[Rh(\eta^3-CH_2CHC=C=CPh_2)(PiPr_3)_2]$ (6). A solution of 1 (173 mg, 0.27 mmol) in toluene (4 mL) was treated dropwise at -40 °C with a 1.00 M solution of CH₂=CHMgBr in THF (0.30 mL, 0.30 mmol). After warming to 0 °C, the solution was stirred for 1 h, which led to a gradual change of color from red to dark red. The solvent was removed in vacuo and the residue extracted with pentane (25 mL). The extract was brought to dryness in vacuo, the oily residue was dissolved in acetone (2 mL), and the solution was stored for 24 h at -78 °C. Red crystals precipitated, which were washed twice with 1-mL portions of acetone (-20 °C) and dried in vacuo. Yield: 104 mg (61%). Mp: 62 °C dec. IR (C₆H₆): v(C=C=C) 1970 cm⁻¹. ¹H NMR (C₆D₆, 400 MHz): δ 7.84, 7.15 (both m, 10H, C₆H₅), 4.79 (dd, $J(H^{1}H^{3}) = 12.1, J(H^{1}H^{2}) = 6.8 \text{ Hz}, 1H, H^{1}, 3.01 \text{ (d, } J(H^{1}H$ Hz, 1H, H²), 2.45 (dd, $J(P^2H^3) = 5.8$, $J(H^1H^3) = 12.1$ Hz, 1H, H³), 2.33, 2.07 (both m, 6H, PCHCH₃), 1.18 (dd, J(PH) = 12.0, J(HH) =7.6 Hz, 18H, PCHCH₃), 1.11 (m, 18H, PCHCH₃).¹³C NMR (C₆D₆, 100.6 MHz): & 183.1 (s, C²), 141.1, 140.4 (both s, ipso-C of C₆H₅), 130.1, 129.2, 127.5, 125.8, 125.2, 122.9 (all s, C₆H₅), 113.2 (ddd, $J(RhC) = 54.0, J(PC) = 17.1 \text{ and } 16.7 \text{ Hz}, C^3), 106.9 \text{ (m, } C^4), 79.7 \text{ (s,}$ $\begin{array}{l} C^1\text{), } 50.3 \ (m, \ C^5\text{), } 28.3 \ (d, \ J(PC) = 9.3 \ Hz, \ PCHCH_3\text{), } 28.0 \ (d, \ J(PC) \\ = 10.0 \ Hz, \ PCHCH_3\text{), } 20.8, \ 20.7, \ 20.5, \ 20.4 \ (all \ s, \ br, \ PCHCH_3\text{). }^{31}\text{P} \\ \text{NMR} \ (C_6D_6, \ 162.0 \ MHz): \ partly \ resolved \ AB \ pattern \ of \ ABX \ spectrum \\ with \ signals \ at \ \delta \ 52.4 \ (A \ part) \ and \ 51.4, \ 51.3, \ 51.2, \ 51.1 \ (B \ part). \\ \text{Anal. Calcd \ for } C_{35}H_{55}P_2\text{Rh:} \ C, \ 65.62; \ H \ 8.65. \ Found: \ C \ 65.40; \ H \\ 8.17. \ For \ assignment \ for \ protons \ H^1 \ to \ H^3 \ and \ carbon \ atoms \ C^1 \ to \ C^5, \\ see \ Chart \ 1. \end{array}$

Preparation of *trans*-[Rh{ η^1 -C(CH=CH₂)=C=CPh₂}(CO)(PiPr₃)₂] (7). A slow stream of CO was passed through a solution of 6 (90 mg, 0.14 mmol) in benzene (3 mL) at 10 °C. A change of color from red to light yellow occurred. After the solution was stirred for 5 min at room temperature, the solvent was evaporated in vacuo. The yellow residue was dissolved in acetone (2 mL) and the solution was stored for 10 h at -78 °C. Yellow crystals precipitated which were separated from the mother liquor, washed three times with 2-mL portions of acetone (0 °C) and dried in vacuo: yield 61 mg (65%); mp 98 °C dec. IR (C₆H₆): ν (C=O) 1930, ν (C=C=C) 1850 cm⁻¹. ¹H NMR (C₆D₆, 200 MHz): δ 7.63, 7.00 (both m, 10H, C₆H₅), 6.84 (dd, $J(H^1H^2) =$ $17.0, J(H^{1}H^{3}) = 9.5 \text{ Hz}, 1H, H^{1}), 5.97 (dd, J(H^{1}H^{2}) = 17.0, J(H^{2}H^{3})$ = 3.1 Hz, 1H, H²), 5.11 (dd, $J(H^{1}H^{3}) = 9.5$, $J(H^{2}H^{3}) = 3.1$ Hz, 1H, H³), 2.01 (m, 6H, PCHCH₃), 1.06 (dvt, N = 13.3, J(HH) = 6.8 Hz, 36H, PCHCH₃). ¹³C NMR (C₆D₆, 50.3 MHz): δ 209.9 (t, J(PC) = 3.2 Hz, C^2), 195.1 (dt, J(RhC) = 55.8, J(PC) = 22.3 Hz, Rh-CO), 144.5 (s, br, C⁴), 141.3 (s, ipso-C of C₆H₅), 129.0, 128.1, 125.3 (all s, C₆H₅), 118.8 (dt, J(RhC) = 27.0, J(PC) = 11.4 Hz, C³), 117.8 (s, C⁵), 98.4 (s, C¹), 26.1 (vt, N = 19.7 Hz, PCHCH₃), 20.5, 20.0 (both s, PCHCH₃). ³¹P NMR (C₆D₆, 81.0 MHz): δ 47.3 (d, J(RhP) = 135.1 Hz). Anal. Calcd for C₃₆H₅₅OP₂Rh: C, 64.66; H, 8.29. Found: C, 64.42; H, 8.39. For assignment for protons H¹ to H³ and carbon atoms C¹ to C⁵ see Chart 1.

Reaction of 7 with CH₃CO₂H. A solution of **7** (35 mg, 0.05 mmol) in C₆D₆ (0.5 mL) was treated at 10 °C with acetic acid (3.1 μ L, 0.05 mmol), which led to a gradual change of color from yellow to paleyellow. After the solution was stirred for 5 min, the NMR spectra confirmed the formation of both *trans*-[Rh(κ^{1} -O₂CCH₃)(CO)(PiPr₃)₂] (**9**)¹³ and the vinylallene CH₂=CH-CH=C=CPh₂ (**8**) as the organic product. NMR data for **8**: ¹H NMR (C₆D₆, 400 MHz): δ 7.40 (m, 4H; ortho-H of C₆H₅), 7.15 (m, 4H, meta-H of C₆H₅), 7.05 (m, 2H, para-H of C₆H₅), 6.22 (m, 2H, H¹ and H²), 5.09 (m, 1H, H³), 4.87 (m, 1H, H⁴). ¹³C NMR (C₆D₆, 100.6 MHz): δ 210.2 (s,=C=CPh₂), 136.8 (s, ipso-C of C₆H₅), 132.5 (s, CH=CH₂), 129.0, 128.8, 127.7 (all s, C₆H₅), 117.0 (s, CH=CH₂), 112.0 (s,=CPh₂), 97.9 (s,=CH-CH=CH₂). For assignment for protons H¹ to H⁴ see Chart 1.

Preparation of [RhCl₂(CH=C=CPh₂)(PiPr₃)₂] (10). A solution of 1 (97 mg, 0.15 mmol) in toluene (5 mL) was treated at 0 °C first with acetone (1 mL) and then dropwise with a 0.05 M solution of HCl in benzene (3 mL, 0.15 mmol). A quick change of color from red to green occurred. After the solution was stirred for 10 min at room temperature, the solvent was evaporated in vacuo. The residue was dissolved in acetone (3 mL) and the solution was stored at -20 °C for 24 h. Green crystals precipitated that were separated from the mother liquor, washed twice with 1-mL portions of acetone (0 °C), and dried in vacuo. Yield: 90 mg (88%). Mp: 164 °C dec. IR (C₆H₆): v(C= C=C) 1875 cm⁻¹. ¹H NMR (CDCl₃, 200 MHz): δ 7.52 (m, 4H, ortho-H of C_6H_5), 7.44 (dt, J(RhH) = 6.4, J(PH) = 3.6 Hz, 1H, RhCH), 7.23 (m, 6H, C_6H_5), 2.93 (m, 6H, PCHCH₃), 1.24 (dvt, N = 13.3, J(HH) =7.1 Hz, 36H, PCHCH₃). ¹³ C NMR (C₆D₆, 50.3 MHz): δ 199.9 (dt, J(RhC) = 1.9, J(PC) = 3.2 Hz, Rh-CH=C), 141.0 (s, br, ipso-C of C₆H₅), 129.6, 127.8, 127.1 (all s, C₆H₅), 114.2 (s, br, Rh-CH=C=C), 68.5 (dt, J(RhC) = 36.2, J(PC) = 8.9 Hz, RhCH), 23.0 (vt, N = 19.1Hz, PCHCH₃), 19.9 (s, PCHCH₃). ³¹P NMR (C₆D₆, 81.0 MHz): δ 25.4 (d, J(RhP) = 97.3 Hz). Anal. Calcd for $C_{33}H_{53}Cl_2P_2Rh$: C, 57.82; H, 7.79. Found: C, 57.82; H, 8.42.

Preparation of [RhCl₂{CH=C=C(*o***-Tol)Ph}(PiPr₃)₂] (11).** This compound was prepared as described for **10** from **2** (92 mg, 0.14 mmol) and a 0.05 M solution of HCl in benzene (2.8 mL, 0.14 mmol) to give

a green air-stable solid. Yield: 83 mg (86%). Mp: 132 °C dec. IR (C₆H₆): ν (C=C=C) 1885 cm⁻¹. ¹H NMR (C₆D₆, 400 MHz): δ 7.85 (dt, *J*(RhH) = 6.4, *J*(PH) = 3.6 Hz, 1H, RhCH), 7.40 (m, 9H, C₆H₄ and C₆H₅), 2.93 (m, 6H, PCHCH₃), 2.14 (s, 3H, C₆H₄CH₃), 1.20 (dvt, N = 13.6, *J*(HH) = 7.0 Hz, 18H, PCHCH₃), 1.19 (dvt, N = 13.2, *J*(HH) = 6.7 Hz, 18H, PCHCH₃), 1.19 (dvt, N = 13.2, *J*(HH) = 6.7 Hz, 18H, PCHCH₃), 1.19 (dvt, N = 13.2, *J*(HH) = 6.7 Hz, 18H, PCHCH₃), 1.3C NMR (C₆D₆, 100.6 MHz): δ 198.9 (s, Rh–CH=C), 141.8, 139.4 (both s, ipso-C of C₆H₄R), 133.9, 130.6, 128.6, 128.3, 127.6, 126.7, 125.8 (all s, C₆H₄ and C₆H₅), 113.2 (s, Rh–CH=C=C), 69.3 (dt, *J*(RhC) = 36.7, *J*(PC) = 8.9 Hz, RhCH), 23.0 (vt, N = 18.9 Hz, PCHCH₃), 20.8 (s, C₆H₄CH₃), 20.0 (s, PCHCH₃). ³¹P NMR (C₆D₆, 162.0 MHz): δ 25.2 (d, *J*(RhP) = 96.9 Hz). Anal. Calcd for C₃₄H₅₅Cl₂P₂Rh: C, 58.37; H, 7.92. Found: C, 58.53; H, 7.78.

Preparation of $[RhCl{\eta^3-anti-CH(PiPr_3)C(Ph)C=C=CPh_2]$ -(**PiPr**₃)] (12). A solution of 1 (191 mg, 0.29 mmol) in benzene (4 mL) was treated at 10 °C with phenylacetylene (32 μ L, 0.29 mmol) and then stirred for 20 h at room temperature. The solvent was evaporated in vacuo, and the remaining red solid was washed twice with 1-mL portions of pentane (-20 °C) and dried in vacuo. Yield: 203 mg (92%). Mp: 189 °C. IR (C₆H₆): ν (C=C=C) 1885 cm⁻¹. ¹H NMR (C₆D₆, 400 MHz): δ 8.00, 7.61, 7.51, 7.09 (all m, 15H, C₆H₅), 2.52, 2.04 (both m, 3H each, PCHCH₃), 2.36 (dd, $J(P^2H) = 9.6$, $J(P^1H) = 5.6$ Hz, 1H, CHP_iPr_3 , 1.33 (dd, J(PH) = 13.2, J(HH) = 7.2 Hz, 9H, PCHCH₃), 1.18 (dd, J(PH) = 15.2, J(HH) = 7.2 Hz, 9H, PCHCH₃), 1.12 (dd, $J(PH) = 12.8, J(HH) = 7.2 Hz, 9H, PCHCH_3), 0.71 (dd, J(PH) =$ 14.8, *J*(HH) = 7.2 Hz, 9H, PCHCH₃). ¹³C NMR (CDCl₃, 100.6 MHz): δ 187.5 (s, C⁴), 143.7 (s, ipso-C of C-C₆H₅), 139.9, 139.2 (both s, ipso-C of =C(C₆H₅)₂), 128.7, 128.2, 128.1, 128.0, 127.2, 126.6, 126.2, 126.0, 125.2 (all s, C₆H₅), 108.9 (s, C⁵), 106.7 (m, C³), 71.8 (d, J(PC) $= 6.8 \text{ Hz}, \text{C}^2$, 24.2 (d, $J(\text{PC}) = 17.7 \text{ Hz}, \text{PCHCH}_3$), 21.6 (d, J(PC) =44.8 Hz, PCHCH₃), 20.9 (ddd, J(RhC) = 65.8, $J(P^2C) = 25.8$, $J(P^1C)$ = 10.6 Hz, C^1), 20.0, 19.1 (both s, br, PCHCH₃), 18.3 (d, J(PC) = 2.4Hz, PCHCH₃), 17.0 (d, J(PC) = 1.8 Hz, PCHCH₃). ³¹P NMR (CDCl₃, 162.0 MHz): δ 52.9 (dd, J(RhP) = 179.6, J(PP) = 14.3 Hz, P¹), 39.3 $(dd, J(RhP) = 4.2, J(PP) = 14.3 \text{ Hz}, P^2)$. MS (70 eV): m/z 750 (M⁺). Anal. Calcd for C₄₁H₅₈ClP₂Rh: C, 65.55; H, 7.78. Found: C, 65.76; H, 7.72. For assignment for carbon atoms C¹ to C⁵ and phosphorus atoms P1 and P2, see Chart 1.

Preparation of [RhCl{ η^3 -anti-CH(PiPr_3)C(p-Tol)C=C=CPh_2}-(PiPr₃)] (13). This compound was prepared as described for 12 from 1 (123 mg, 0.19 mmol) and p-tolylacetylene (24 μ L, 0.19 mmol) to give a red solid after a 40 h reaction time. Yield: 127 mg (88%). Mp: 190 °C. IR (C₆H₆): v(C=C=C) 1925 cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): δ 7.52, 7.05 (both m, br, 14H, C₆H₄ and C₆H₅), 2.26, 2.24 (both m, 3H each, PCHCH₃), 2.22 (m, 1H, CHPiPr₃), 2.14 (s, 3H, $C_6H_4CH_3$, 1.35 (dd, J(PH) = 15.2, J(HH) = 7.2 Hz, 9H, PCHCH₃), 1.03 (dd, J(PH) = 13.2, J(HH) = 7.2 Hz, 9H, PCHCH₃), 0.93 (dd, $J(PH) = 15.2, J(HH) = 7.2 Hz, 9H, PCHCH_3), 0.81 (dd, J(PH) =$ $11.2, J(HH) = 7.2 \text{ Hz}, 9H, PCHCH_3$. ¹³C NMR (CDCl₃, 100.6 MHz): δ 187.3 (s, C⁴), 140.5 (s, ipso-C of C₆H₄), 139.8, 139.0 (both s, ipso-C of =C(C₆H₅)₂), 135.6, 128.7, 128.5, 128.0, 127.8, 126.8, 126.5, 125.9, 125.0 (all s, C_6H_4 and C_6H_5), 108.6 (s, C^5), 106.7 (ddd, J(RhC) = 26.2, J(PC) = 8.0 and 1.9 Hz, C³), 71.9 (d, J(PC) = 6.0 Hz, C²), 24.0 (d, J(PC) = 17.6 Hz, PCHCH₃), 21.4 (d, J(PC) = 43.3 Hz, PCHCH₃), 21.2 (s, C₆H₄CH₃), 20.2 (ddd, J(RhC) = 65.9, $J(P^2C) = 41.2$, $J(P^1C)$ = 10.1 Hz, C¹), 19.8, 19.0 (both s, br, PCHCH₃), 18.1 (d, J(PC) = 2.2Hz, PCHCH₃), 16.9 (d, J(PC) = 2.0 Hz, PCHCH₃). ³¹P NMR (CDCl₃, 162.0 MHz): δ 52.4 (dd, J(RhP) = 179.3, J(PP) = 14.2 Hz, P¹), 38.7 $(dd, J(RhP) = 4.0, J(PP) = 14.2 \text{ Hz}, P^2)$. Anal. Calcd for $C_{42}H_{60}ClP_2$ -Rh: C, 65.92; H, 7.90. Found: C, 65.76; H, 7.80. For assignment for carbon atoms C^1 to C^5 and phosphorus atoms P^1 and P^2 , see Chart 1.

Preparation of [RhCl{\eta^3-anti-CH(PiPr_3)C(SiMe_3)C=C=CPh_2}-(PiPr_3)] (14). A solution of 1 (245 mg, 0.38 mmol) in benzene (10 mL) was treated at 10 °C with trimethylsilylacetylene (150 μ L, 1.06 mmol) and then stirred for 14 days at room temperature. The solvent was evaporated in vacuo, the remaining oily residue dissolved in pentane (15 mL), and the solution stored for 2 days at -78 °C. Red crystals

precipitated that were separated from the mother liquor, washed twice with 1-mL portions of pentane (-20 °C), and dried in vacuo. Yield: 203 mg (72%). Mp: 63 °C. IR (C₆H₆): v(C=C=C) 1915 cm⁻¹. ¹H NMR (C₆D₆, 400 MHz): δ 7.56, 7.40, 7.12 (all m, 10H, C₆H₅), 2.55, 2.21 (both m, 3H each, PCHCH₃), 2.06 (dd, $J(P^2H) = 14.4$, $J(P^1H) =$ 5.2 Hz, 1H, CHPiPr₃), 1.36 (dd, J(PH) = 12.4, J(HH) = 7.2 Hz, 9H, $PCHCH_3$), 1.35 (dd, J(PH) = 12.3, J(HH) = 7.2 Hz, 9H, $PCHCH_3$), 1.22 (dd, J(PH) = 14.8, J(HH) = 7.2 Hz, 9H, PCHCH₃), 0.75 (dd, $J(PH) = 15.2, J(HH) = 7.2 Hz, 9H, PCHCH_3), 0.46$ (s, 9H, SiMe₃). ¹³C NMR (C₆D₆, 100.6 MHz): δ 187.7 (s, C⁴), 142.1, 141.4 (both s, ipso-C of C₆H₅), 129.0, 128.5, 128.3, 127.5, 125.8, 125.5 (all s, C₆H₅), 108.4 (s, C⁵), 106.7 (ddd, J(RhC) = 25.2, $J(P^{1}C) = J(P^{2}C) = 4.5$ Hz, C³), 69.2 (dd, $J(P^{1}C) = J(P^{2}C) = 5.2$ Hz, C²), 25.1 (d, J(PC) = 17.1Hz, PCHCH₃), 23.4 (ddd, J(RhC) = 66.1, $J(P^2C) = 27.2$, $J(P^1C) =$ 10.4 Hz, C¹), 21.5 (d, J(PC) = 43.3 Hz, $PCHCH_3$), 20.4, 20.3 (both s, $PCHCH_3$), 18.3 (d, J(PC) = 2.8 Hz, $PCHCH_3$), 17.4 (d, J(PC) = 2.1Hz, PCHCH₃), 0.46 (s, SiMe₃). ³¹P NMR (C₆D₆, 162.0 MHz): δ 48.0 $(dd, J(RhP) = 180.5, J(PP) = 15.7 Hz, P^1), 40.3 (dd, J(RhP) = 4.5,$ $J(PP) = 15.7 \text{ Hz}, P^2$). ²⁹Si NMR (C₆D₆, 39.8 MHz): $\delta - 1.9$ (m). Anal. Calcd for C₃₈H₆₂ClP₂RhSi: C, 61.08; H, 8.36. Found: C, 60.83; H, 8.42. For assignment for carbon atoms C¹ to C⁵ and phosphorus atoms P^1 and P^2 , see Chart 1.

Preparation of [Rh(C₆H₅){ η ³-anti-CH(PiPr₃)C(Ph)C=C=CPh₂}-(PiPr₃)] (15). A solution of 12 (105 mg, 0.14 mmol) in benzene (3 mL) was treated at 5 °C with a 1.0 M solution of C₆H₅MgBr in ether (0.50 mL, 0.50 mmol) and then stirred for 3 h at 50 °C. After the solution was cooled to room temperature, the solvent was evaporated in vacuo and the residue extracted with pentane (25 mL). The extract was brought to dryness in vacuo, the remaining oily residue was dissolved in ether (5 mL), and the solution stored for 24 h at -78 °C. Black crystals precipitated, which were separated from the mother liquor, washed twice with 1-mL portions of acetone (-20 °C), and dried in vacuo. Yield: 72 mg (65%). Mp: 160 °C. IR (C₆H₆): v(C= C=C) 1925 cm⁻¹. ¹H NMR (C₆D₆, 200 MHz): δ 8.09, 7.94, 7.72, 7.58, 7.17 (all m, 20H, C₆H₅), 2.16, 1.89 (both m, 3H each, PCHCH₃), 2.08 (dd, $J(P^2H) = 8.3$, $J(P^1H) = 5.4$ Hz, 1H, CHPiPr₃), 1.22 (dd, $J(PH) = 12.9, J(HH) = 7.1 Hz, 9H, PCHCH_3), 1.06 (dd, J(PH) =$ 13.0, *J*(HH) = 7.2 Hz, 9H, PCHCH₃), 0.99 (dd, *J*(PH) = 15.3, *J*(HH) = 7.1 Hz, 9H, PCHCH₃), 0.55 (dd, J(PH) = 14.9, J(HH) = 7.1 Hz, 9H, PCHCH₃). ³¹P NMR (C₆D₆, 81.0 MHz): δ 53.7 (dd, J(RhP) = $198.1, J(PP) = 14.2 \text{ Hz}, P^1$, 38.2 (dd, J(RhP) = 4.6, J(PP) = 14.2 Hz,P²). Anal. Calcd for C₄₇H₆₃P₂Rh: C, 71.20; H, 8.01. Found: C, 70.90; H, 8.31. For assignment of phosphorus atoms P^1 and P^2 , see Chart 1.

Preparation of [Rh(CH=CH₂){ η^3 -anti-CH(PiPr₃)C(Ph)C=C= CPh₂}(PiPr₃)] (16). A solution of 12 (203 mg, 0.27 mmol) in benzene (4 mL) was treated at 5 °C with a 1.0 M solution of CH2=CHMgBr in THF (0.50 mL, 0.50 mmol) and then stirred for 24 h at room temperature. After the solvent was evaporated in vacuo, the oily residue was worked up as described for 15. A black solid was obtained. Yield: 143 mg (71%). Mp: 141 °C. IR (C₆H₆): ν (C=C=C) 1930 cm⁻¹. ¹H NMR (C₆D₆, 400 MHz): δ 8.64 (m, 1H, RhCH=CH₂), 7.93, 7.56-6.98 (both m, 15H, C₆H₅), 6.47 (m, 1H, one H of RhCH=CH₂), 5.76 (m, 1H, one H of RhCH= CH_2), 2.25, 1.98 (both m, 3H each, PCHCH₃), $1.28 (dd, J(PH) = 14.4, J(HH) = 7.2 Hz, 9H, PCHCH_3), 1.15 (dd,$ $J(PH) = 13.1, J(HH) = 7.2 Hz, 9H, PCHCH_3), 1.06 (dd, J(PH) =$ 13.2, *J*(HH) = 7.1 Hz, 9H, PCHCH₃), 0.62 (dd, *J*(PH) = 12.2, *J*(HH) = 7.1 Hz, 9H, PCHCH₃), signal of CHPiPr₃ probably covered by resonances of PCHCH3. $^{13}\mathrm{C}$ NMR (C₆D₆, 100.6 MHz): δ 177.4 (s, C⁴), 173.4 (dd, *J*(RhC) = 42.3, *J*(PC) = 16.1, RhCH), 146.2 (s, ipso-C of C-C₆H₅), 142.0, 141.1 (both s, ipso-C of = $C(C_6H_5)_2$), 129.4, 128.5, 128.4, 128.3, 127.3, 126.5, 126.2, 125.3, 124.1 (all s, C₆H₅), 119.5 (s, =CH₂), 106.5 (dd, J(RhC) = 12.1, J(PC) = 6.0 Hz, C³), 101.3 (s, C⁵), 76.7 (d, J(PC) = 6.1 Hz, C²), 26.2 (d, J(PC) = 17.4 Hz, PCHCH₃), 21.6 (d, J(PC) = 43.2, $PCHCH_3$), 20.0 (ddd, J(RhC) = 65.4, $J(P^2C) =$ 36.3, *J*(P¹C) = 12.1 Hz, C¹), 20.4, 19.7, 18.2, 17.1 (all s, br, PCH*C*H₃). ³¹P NMR (C₆D₆, 162.0 MHz): δ 55.6 (dd, J(RhP) = 199.6, J(PP) =

13.0 Hz, P¹), 37.5 (dd, J(RhP) = 3.2, J(PP) = 13.0 Hz, P²). Anal. Calcd for $C_{43}H_{61}P_2Rh$: C, 69.53; H, 8.28. Found: C, 67.84; H, 8.52. For assignment for carbon atoms C¹ to C⁵ and phosphorus atoms P¹ and P², see Chart 1.

Reaction of 12 with CO. A slow stream of CO was passed for 30 s through a solution of 12 (70 mg, 0.10 mmol) in C₆D₆ (1 mL) at 10 °C. A change of color from red to violet occurred. The IR spectrum of the solution confirmed the formation of trans-[RhCl(CO)(PiPr₃)₂] (18)²⁰ and [RhCl(CO)₂]₂ (19).²¹ The solution was evaporated in vacuo and the residue extracted with pentane (15 mL). The extract was concentrated to ca. 5 mL and the solution stored for 2 h at -78 °C. A violet solid (18 mg) precipitated that was separated from the mother liquor, washed twice with pentane (-20 °C), and dried in vacuo. The IR and NMR spectra indicated that the violet solid contained, besides the phosphorus ylide iPr3PCHC(Ph)=C=C=CPh2 (17) as the main product, small quantities of 18 that could not be completely separated by fractional crystallization. NMR data for 17. ¹H NMR (C₆D₆, 400 MHz): δ 8.06, 7.77, 7.14 (all m, 15H, C₆H₅), 3.05 (d, J(PH) = 15.2 Hz, 1H, CHPiPr₃), 2.15 (m, 3H, PCHCH₃), 0.85 (dd, J(PH) = 15.2, $J(\text{HH}) = 7.6 \text{ Hz}, 18\text{H}, \text{PCHC}H_3$). ¹³C NMR (C₆D₆, 100.6 MHz): δ 174.2, 171.2 (both s, C=C=CPh₂ and C=C=CPh₂), 143.8, 140.9, 140.1, 139.1, 129.3, 128.7, 128.6, 128.5, 128.4, 127.9, 127.8, 126.0, 125.9 (all s, CPh_2 and C_6H_5), 93.4 (s, br, CHCPh) 45.9 (d, J(PC) =100.8 Hz, iPr_3PCH), 23.5 (d, J(PC) = 49.0 Hz, $PCHCH_3$), 17.4 (d, J(PC) = 2.7 Hz, PCHCH₃). ³¹P NMR (C₆D₆, 162.0 MHz): δ 33.57 (s).

Preparation of [RhCl₃{C(PiPr₃)C=CPh₂}(PiPr₃)] (21). Method a. A solution of **1** (91 mg, 0.14 mmol) in THF (3 mL) was treated dropwise at room temperature under the exclusion of light with a freshly prepared solution of Cl₂ in hexane. The addition was stopped when the ³¹P NMR spectrum of the solution confirmed the complete conversion of **1** to the product. A pink-red precipitate was formed that was separated from the mother liquor, washed three times with 2-mL portions of acetone (-20 °C), and dried. The solid was dissolved in CH₂Cl₂ (2 mL), and the solution was carefully layered with pentane (10 mL) and then stored for 24 h at 8 °C. Dark red crystals precipitated that were washed twice with 1-mL portions of pentane (-10 °C) and dried in vacuo. Yield: 92 mg (91%).

Method b. A solution of 1 (78 mg, 0.12 mmol) in CH₂Cl₂ (3 mL) was treated at -60 °C with PhICl₂ (21 mg, 0.12 mmol). After the solvent was evaporated in vacuo, the residue was washed twice with 1-mL portions of acetone (-20 °C) and worked up as described for method a. yield: 79 mg (92%). mp 136 °C dec. IR (CH2Cl2): v(C= C=C) 1865 cm⁻¹. ¹H NMR (200 MHz, CDCl₃): δ 7.55, 7.31 (both m, 10H, C₆H₅), 3.34, 2.75 (both m, 3H each, PCHCH₃), 1.44 (dd, J(PH) $= 15.5, J(HH) = 7.1 Hz, 18H, PCHCH_3), 1.21 (dd, J(PH) = 15.7,$ $J(\text{HH}) = 6.9 \text{ Hz}, 18\text{H}, \text{PCHC}H_3$). ¹³C NMR (100.6 MHz, CDCl₃): δ 209.7 (s, $C=CPh_2$), 136.4, 136.3 (both s, ipso-C of C₆H₅), 128.9, 128.8, 128.5, 128.4, 127.3, 127.2 (all s, C_6H_5), 105.3 (d, J(RhC) = 18.1 Hz, CPh_2), 75.8 (ddd, J(RhC) = 35.6, $J(P^1C) = 19.2$, $J(P^2C) = 5.5$ Hz, $CPiPr_3$), 30.8 (d, J(PC) = 25.6 Hz, $PCHCH_3$), 24.5 (d, J(PC) = 40.3Hz, PCHCH₃), 19.9 (d, J(PC) = 3.3 Hz, PCHCH₃), 18.9 (d, J(PC) = 2.2 Hz, PCHCH₃). ³¹P NMR (81.0 MHz, CDCl₃): δ 110.9 (dd, J(RhP) $= 144.9, J(PP) = 2.9 Hz, RhPiPr_3), 48.2 (dd, J(RhP) = 6.5, J(PP) =$ 2.9 Hz, CPiPr₃). Anal. Calcd for C₃₃H₅₂Cl₃P₂Rh: C, 55.05; H, 7.28; Rh 14.29. Found: C, 54.89; H, 7.43; Rh, 13.75.

Preparation of [RhCl₃{C(PiPr₃)C=C(o-Tol)Ph}(PiPr₃)] (22). This compound was prepared as described for **21** (route b) from **2** (83 mg, 0.12 mmol) and PhICl₂ (21 mg, 0.12 mmol) to give dark red crystals. Yield: 81 mg (92%). Mp: 104 °C dec. IR (CH₂Cl₂): ν(C=C=C) 1868 cm⁻¹. ¹H NMR (400 MHz, CD₂Cl₂): δ 7.72, 7.47, 7.25 (all m, 9H, C₆H₄ and C₆H₅), 3.37, 2.77 (both m, 3H each, PCHCH₃), 1.87 (s, 3 H, C₆H₄CH₃), 1.40, 1.37 (both dd, br, *J*(PH) = 15.5, *J*(HH) = 7.4 Hz, 9H each, PCHCH₃), 1.30 (dd, *J*(PH) = 15.7, *J*(HH) = 7.0 Hz, 9H, PCHCH₃), 1.18 (dd, *J*(PH) = 15.9, *J*(HH) = 7.1 Hz, 9H, PCHCH₃). ¹³C NMR (100.6 MHz, CD₂Cl₂): δ 210.1 (s, C=C(o-Tol)Ph), 136.9

(d, J(PC) = 8.0 Hz, ipso-C of C₆H₄ or C₆H₅), 134.5 (d, J(PC) = 7.0 Hz, ipso-C of C₆H₄ or C₆H₅), 131.4, 130.8, 128.6, 128.5, 128.2, 126.7, 126.0 (all s, C₆H₄ and C₆H₅), 105.5 (d, J(PC) = 17.1 Hz, C(o-Tol)Ph), 75.5 (ddd, J(RhC) = 35.0, $J(P^1C) = 20.8$, $J(P^2C) = 5.7 \text{ Hz}$, $CPiPr_3$), 29.8 (d, J(PC) = 25.5 Hz, PCHCH₃), 24.5 (d, J(PC) = 40.2 Hz, PCHCH₃), 21.4, 18.1 (both s, PCHCH₃), 15.3 (s, C₆H₄CH₃). ³¹P NMR (162.0 MHz, CD₂Cl₂): δ 108.6 (d, J(RhP) = 144.2 Hz, RhPiPr₃), 47.6 (s, CPiPr₃). Anal. Calcd for C₃₃H₅₄Cl₃P₂Rh: C, 55.64; H, 7.42. Found: C, 55.21; H, 7.25.

Preparation of $[RhCl_3{C(PiPr_3)C=C(p-C_6H_4OMe)_2}(PiPr_3)]$ (23). This compound was prepared as described for 21 (route b) from 20 (78 mg, 0.11 mmol) and PhICl₂ (19 mg, 0.11 mmol) tp give dark red crystals. Yield: 76 mg (88%). Mp: 108 °C. IR (C₆H₆): ν (C=C=C) 1871 cm⁻¹. ¹H NMR (400 MHz, CD₂Cl₂): δ 7.49, 6.88 (both d, *J*(HH) = 8.8 Hz, 4H each, C₆H₄), 3.80 (s, 6H, OCH₃), 3.30, 2.75 (both m, 3H) each, PCHCH₃), 1.43, 1.21 (both dd, J(PH) = 15.6, J(HH) = 7.2 Hz, 18H each, PCHCH₃). ¹³C NMR (100.6 MHz, CD₂Cl₂): δ 210.1 (s, $C = C(p-C_6H_4OMe)_2)$, 159.4 (s, COMe), 130.6 (d, J(PC) = 3.0 Hz, C_6H_4), 129.0 (d, J(PC) = 8.0 Hz, ipso-C of C_6H_4), 114.2 (s, C_6H_4), 105.5 (d, J(PC) = 17.1 Hz, $=C(p-C_6H_4OMe)_2$), 75.2 (ddd, J(RhC) =35.4, $J(P^1C) = 19.8$, $J(P^2C) = 5.8$ Hz, $CPiPr_3$), 55.7 (s, OCH₃), 31.0 $(d, J(PC) = 26.0 \text{ Hz}, PCHCH_3), 24.8 (d, J(PC) = 40.0 \text{ Hz}, PCHCH_3),$ $20.2 (d, J(PC) = 2.5 Hz, PCHCH_3), 19.2 (d, J(PC) = 2.3 Hz, PCHCH_3).$ ³¹P NMR (162.0 MHz, CD₂Cl₂): δ 108.9 (d, J(RhP) = 145.8 Hz, RhP*i*Pr₃), 47.3 (d, J(RhP) = 5.2 Hz, CP*i*Pr₃). Anal. Calcd for C₃₅H₅₆-Cl₃O₂P₂Rh: C, 53.89; H, 7.24. Found: C, 53.67; H, 7.46.

Preparation of *trans*-[RhCl{=C=CHC(Ph)(CF₃)OH}($PiPr_{3}$)₂] (25). A solution of 24 (86 mg, 0.13 mmol) in ether (5 mL) was treated dropwise with a solution of HC≡CC(Ph)(CF₃)OH (47 mg, 0.26 mmol) in ether (2 mL) at room temperature. A change of color from red to yellow occurred. After NEt₃ (3 mL) was added, the reaction mixture was stirred for 10 h at 20 °C, which led again to a change of color from yellow to blue. The solvent was evaporated in vacuo, the residue was dissolved in benzene (2 mL), and the solution was chromatographed on Al₂O₃ (activity grade V, neutral, height of column 10 cm). With benzene a blue fraction was eluted, which was brought to dryness in vacuo. A blue, moderately air-sensitive solid was obtained that was washed twice with 2-mL portions of acetone (0 °C) and dried. Yield: 153 mg (91%). Mp: 140 °C dec. IR (C₆H₆): v(OH) 3580, v(C=C) 1650 cm⁻¹. ¹H NMR (CDCl₃, 200 MHz): δ 7.36 (m, 5H, C₆H₅), 2.76 (s, 1H, OH), 2.64 (m, 6H, PCHCH₃), 1.27 (dvt, N = 25.2, J(HH) = 11.7 Hz, 18H, PCHCH₃), 1.19 (dvt, N = 13.5, J(HH) = 6.6 Hz, 18H, PCHCH₃), 0.69 (t, J(PH) = 3.3 Hz, 1H, Rh=C=CHR). ¹³C NMR $(C_6D_6, 100.6 \text{ MHz})$: δ 281.0 (dt, J(RhC) = 62.4, J(PC) = 15.1 Hz, Rh=C=CHR), 138.7 (s, ipso-C of C₆H₅), 128.4, 127.9, 126.0 (all s, C_6H_5 , 125.5 (q, J(CF) = 286.8 Hz, CF₃), 110.3 (dt, br, J(RhC) = 16.1, J(PC) = 5.2 Hz, Rh=C=CHR), 65.0 (q, J(CF) = 29.7 Hz, CPh-(CF₃)OH), 23.3 (vt, N = 20.5 Hz, PCHCH₃), 19.8 (s, PCHCH₃). ³¹P NMR (CDCl₃, 81.0 MHz): δ 41.9 (d, J(RhP) = 130.2 Hz). ¹⁹F NMR (CDCl₃, 188.3 MHz): δ -82.3 (s). Anal. Calcd for C₂₈H₄₉ClF₃OP₂-Rh: C, 51.03; H, 7.49. Found: C, 50.85; H, 7.58.

Preparation of *trans*-[**RhCl**{=**C**=**C**(**CF**₃)**Ph**}(**PiPr**₃)₂] (26). A solution of **25** (153 mg, 0.23 mmol) in benzene (3 mL) was passed through a column with Al₂O₃ (activity grade I, acid, height of column 8 cm). While eluting with benzene, a change of color from blue to green-yellow was observed. The eluted solution was brought to dryness in vacuo, the remaining yellow solid was washed three times with 1-mL portions of pentane and dried. Yield: 139 mg (93%). Mp: 124 °C dec. IR (C₆H₆): ν(C=C=C) 1855 cm⁻¹. ¹H NMR (C₆D₆, 400 MHz): δ 7.98 (m, 2H, ortho-H of C₆H₅), 7.43 (m, 1H, para-H of C₆H₅), 6.63 (m, 2H, meta-H of C₆H₅), 2.96 (m, 6H, PCHCH₃), 1.28 (dvt, *N* = 13.6, *J*(HH) = 7.1 Hz, 36H, PCHCH₃). ¹³C NMR (C₆D₆, 100.6 MHz): δ 277.3 (m, Rh=C=C=C), 210.3 (m, Rh=C=C=C), 152.5 (s, ipso-C of C₆H₅), 134.3 (q, *J*(CF) = 276.6 Hz, CF₃), 130.2, 127.3, 120.7 (all s, C₆H₅), 121.8 (q, *J*(CF) = 33.2 Hz, Rh=C=C=C), 24.1 (vt, *N* = 20.4 Hz, PCHCH₃), 20.2 (s, PCHCH₃). ³¹P NMR (C₆D₆, 162.0 MHz):

δ 36.0 (d, *J*(RhP) = 127.0 Hz). ¹⁹F NMR (C₆D₆, 376.5 MHz): δ -66.7 (s). MS (70 eV): *m*/*z* 640 (M⁺), 184 (C=C=C(Ph)CF₃⁺). Anal. Calcd for C₂₈H₄₇ClF₃P₂Rh: C, 52.47; H, 7.39. Found: C, 52.11; H, 7.21.

Preparation of *trans*-[RhCl(η^2 -H₂C=C=C=CPh₂)(PiPr₃)₂] (28). A solution of 1 (90 mg, 0.14 mmol) in benzene (3 mL) was treated dropwise with a 0.28 M solution of diazomethane in ether (1.5 mL, 0.42 mmol) at room temperature. An instantaneous evolution of gas (N2) and a change of color from deep red to pale red occurred. After the solution was stirred for 5 min, the solvent was evaporated in vacuo. The residue was dissolved in pentane (10 mL) and the solution was stored for 12 h at -78 °C. Red crystals precipitated that were separated from the mother liquor, washed twice with 1-mL portions of pentane (-20 °C), and dried. Yield: 87 mg (95%). Mp: 113 °C dec. IR (C₆H₆): ν (C=C=C=C) 1950 cm⁻¹. ¹H NMR (400 MHz, C₆D₆): δ 7.48 (m, 4H, ortho-H of C₆H₅), 7.12 (m, 6H, meta- and para-H of C₆H₅), 2.61 (dt, J(PH) = 5.4, J(RhH) = 1.6 Hz, 2H, =CH₂), 2.48 (m, 6H, PCHCH₃), 1.23 (dvt, N = 14.0, J(HH) = 7.2 Hz, 18H, PCHCH₃), 1.21 (dvt, N = 14.4, J(HH) = 7.2 Hz, 18H, PCHCH₃). ¹³C NMR (100.6 MHz, C₆D₆): δ 181.5 (s, C=CPh₂), 141.4 (s, ipso-C of C₆H₅), 128.8, 128.5, 126.5 (all s, C_6H_5), 111.4 (s, =CPh₂), 108.5 (dt, J(RhC) = 22.1, J(PC) = 5.0 Hz, $C=CH_2$), 23.0 (vt, N = 18.1 Hz, PCHCH₃), 20.8, 20.2 (both s, PCHCH₃), 13.0 (d, J(RhC) = 13.6 Hz, =CH₂). ³¹P NMR (162.0 MHz, C₆D₆): δ 35.5 (d, J(RhP) = 115.7 Hz). Anal. Calcd for C₃₄H₅₄ClP₂Rh: C, 61.58; H, 8.21; Rh, 15.52. Found: C, 61.30; H, 8.37; Rh, 14.79.

Preparation of *trans*-[RhCl{ η^2 -H₂C=C=C=C(p-C₆H₄OMe)₂}-(PiPr₃)₂] (29). This compound was prepared as described for 28 from 20 (83 mg, 0.12 mmol) and a 0.28 M solution of diazomethane in ether (1.5 mL, 0.42 mmol). After recrystallization from pentane at -78 °C, orange crystals were obtained. Yield: 81 mg (96%). Mp: 126 °C dec. IR (C₆H₆): ν (C=C=C=C) 1939 cm⁻¹. ¹H NMR (400 MHz, C₆D₆): δ 7.47, 6.81 (both d, J(HH) = 8.8 Hz, 4H each, C₆H₄), 3.34 (s, 6H, OCH_3 , 2.64 (dt, J(PH) = 5.7, J(RhH) = 1.6 Hz, 2H, = CH_2), 2.50 (m, 6H, PCHCH₃), 1.26 (dvt, N = 14.4, J(HH) = 7.2 Hz, 18H, PCHCH₃), 1.24 (dvt, N = 14.0, J(HH) = 7.2 Hz, 18H, PCHCH₃). ¹³C NMR (100.6 MHz, C₆D₆): δ 179.9 (s, C=C(p-C₆H₄OMe)₂), 159.0 (s, COMe), 134.2 (s, ipso-C of C₆H₄), 129.9, 114.0 (both s, C₆H₄), 111.1 (s, $=C(p-C_6H_4)$ - OMe_{2} , 108.7 (dt, J(RhC) = 22.1, J(PC) = 4.0 Hz, $C=CH_{2}$), 54.8 (s, OCH_3), 23.1 (vt, N = 18.1 Hz, $PCHCH_3$), 20.8, 20.3 (both s, $PCHCH_3$), 12.0 (d, J(RhC) = 13.7 Hz, =CH₂). ³¹P NMR (162.0 MHz, C₆D₆): δ 35.5 (d, J(RhP) = 116.8 Hz). Anal. Calcd for $C_{36}H_{58}ClO_2P_2Rh$: C, 59.79; H, 8.08. Found: C, 59.64; H, 8.19.

Preparation of *trans*-[RhCl{ η^2 -H₂C=C=C=C(CF₃)Ph}(PiPr₃)₂] (30). This compound was prepared as described for 28 from 26 (85 mg, 0.13 mmol) and a 0.28 M solution of diazomethane in ether (1.5 mL, 0.42 mmol). After recrystallization from pentane at -78 °C, red crystals were obtained. Yield: 83 mg (96%). Mp: 118 °C dec. IR (C_6H_6) : ν (C=C=C=C) 2020 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.27 (m, 5H, C₆H₅), 2.87, 2.78 (both dddd, $J(HH) = J(P^{1}H) = J(P^{2}H)$ = 5.6, J(RhH) = 1.6 Hz, 1H each, $=CH_2$), 2.56, 2.33 (both m, 3H each, PCHCH₃), 1.37 (dvt, N = 14.0, J(HH) = 7.2 Hz, 9H, PCHCH₃), 1.30 (dvt, N = 12.8, J(HH) = 6.8 Hz, 9H, PCHCH₃), 1.18 (dvt, N =12.8, J(HH) = 6.4 Hz, 9H, PCHCH₃), 1.04 (dvt, N = 13.6, J(HH) =6.8 Hz, 9H, PCHCH₃). ¹³C NMR (100.6 MHz, CDCl₃): δ 183.8 (s, C=C(Ph)CF₃), 135.2 (s, ipso-C of C₆H₅), 128.3, 127.4, 127.1 (all s, C_6H_5), 125.0 (q, J(FC) = 272.2 Hz, CF_3), 109.9 (dt, J(RhC) = 22.1, J(PC) = 4.0 Hz, $C=CH_2$), 99.3 (q, J(FC) = 34.0 Hz, $=C(Ph)CF_3$), 22.2 (vt, N = 18.9 Hz, PCHCH₃), 22.1 (vt, N = 18.7 Hz, PCHCH₃), 20.5, 20.1, 19.8, 19.6 (all s, PCHCH₃), 16.1 (d, J(RhC) = 14.7 Hz, =CH₂). ¹⁹F NMR (376.5 MHz, CDCl₃): δ -58.6 (s). ³¹P NMR (162.0 MHz, CDCl₃): Partly resolved AB pattern of ABX spectrum with signals at δ 34.8 and 34.2. MS (70 eV): m/z 654 (M⁺), 458 ([M - Cl PiPr₃]⁺). Anal. Calcd for C₂₉H₄₉ClF₃P₂Rh: C, 53.18; H, 7.54. Found: C, 52.98; H, 7.51.

Preparation of *trans*-[RhCl{ η^2 -H₂C=C=C(tBu)Ph}(PiPr_3)₂] (31). This compound was prepared as described for 28 from 27 (86

mg, 0.14 mmol) and a 0.28 M solution of diazomethane in ether (1.5 mL, 0.42 mmol). After recrystallization from pentane at -78 °C, orange crystals were obtained. Yield: 80 mg (92%). Mp: 105 °C. IR (C₆H₆): ν(C=C=C=C) 1945 cm⁻¹. ¹H NMR (400 MHz, C₆D₆): δ 7.22, 7.02 (both m, 5H, C₆H₅), 2.65-2.57 (m, 5H, =CH₂ and PCHCH₃), 2.44 (m, 3H, PCHCH₃), 1.42 (m; d in ${}^{1}H{}^{31}P{}$, J(HH) = 7.2 Hz, 9H, PCHCH₃), 1.26 (m; d in ${}^{1}H{}^{31}P{}$, J(HH) = 7.2 Hz, 9H, PCHCH₃), 1.25 (s, 9H, C(CH₃)₃), 1.08 (m, 18H, PCHCH₃). ¹³C NMR (100.6 MHz, CDCl₃): δ 179.3 (s, C=C(tBu)Ph), 141.6 (s, ipso-C of C₆H₅), 128.8, 127.4, 125.8 (all s, C_6H_5), 100.2 (s, =C(*t*Bu)Ph), 109.4 (dt, *J*(RhC) = 23.1, J(PC) = 5.0 Hz, $C=CH_2$), 36.3 (s, $C(CH_3)_3$), 30.0 (s, $C(CH_3)_3$), 22.3 (vt, N = 24.2 Hz, PCHCH₃), 22.3 (vt, N = 24.0 Hz, PCHCH₃), 21.0, 20.6, 20.1, 19.8 (all s, PCHCH₃), 12.5 (d, J(RhC) = 13.4 Hz, =CH₂). ³¹P NMR (162.0 MHz, C₆D₆): AB part of a degenerated ABX spectrum with four signals at δ 36.3, 36.1, 35.6, and 35.4. Anal. Calcd for C32H58ClP2Rh: C, 59.76; H, 9.09. Found: C, 59.64; H, 8.90.

Preparation of *trans*-[RhCl(η^2 -H₂C=*C*=*C*Ph₂)(P*i*Pr₃)₂] (32). A solution of 28 (83 mg, 0.13 mmol) in toluene (3 mL) was stirred for 2 h at 80 °C. A smooth change of color from red to yellow occurred. After the solution was cooled to room temperature, the solvent was evaporated in vacuo. The remaining yellow microcrystalline residue was washed twice with 1-mL portions of ether (0 °C) and dried. Yield: 81 mg (98%). Mp: 162 °C dec. IR (C_6H_6): ν (C=C=C=C) 1930 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 9.03, 7.39 (both m, 2H each, ortho-H of C_6H_5), 7.34, 7.29 (both m, 2H each, meta-H of C_6H_5), 7.14 (m, 2 H, para-H of C₆H₅), 5.46 (s, br, 1H, exo-H of =CH₂), 5.00 (s, br, 1H, endo-H of = CH_2), 2.46 (m, 6H, PCHCH₃), 1.30 (dvt, N = 14.0, J(HH) = 7.2 Hz, 18H, PCHCH₃), 1.14 (dvt, N = 12.8, J(HH) =6.8 Hz, 18H, PCHCH₃). ¹³C NMR (100.6 MHz, CDCl₃): δ 142.7 (dt, J(RhC) = 17.1, J(PC) = 4.0 Hz, RhC), 141.6, 140.1 (both s, ipso-C of C_6H_5 , 138.0 (dt, J(RhC) = 20.1, J(PC) = 5.0 Hz, RhC), 129.3, 128.8, 128.5, 128.1, 127.0, 126.6 (all s, C₆H₅), 127.6 (s, br, =CPh₂), 98.4 (s, br, =CH₂), 23.5 (vt, N = 19.4 Hz, PCHCH₃), 20.9, 19.8 (both s, PCHCH₃). ³¹P NMR (162.0 MHz, CDCl₃): δ 31.0 (d, J(RhP) = 116.3 Hz). Anal. Calcd for C₃₄H₅₄ClP₂Rh: C, 61.58; H, 8.21; Rh, 15.51. Found: C, 61.31; H, 8.45; Rh, 15.91.

Preparation of *trans*-[RhCl{ η^2 -H₂C=*C*=*C*(*p*-C₆H₄OMe)₂}-(**PiPr**₃)₂] (33). This compound was prepared as described for 32 from 29 (94 mg, 0.13 mmol) to give a yellow microcrystalline solid. Yield: 91 mg (97%). Mp: 167 °C dec. IR (C₆H₆): ν (C=C=C=C) 2029 cm⁻¹. ¹H NMR (400 MHz, C₆D₆): δ 9.06, 7.02, 7.35, 6.89 (all d, J(HH) = 8.8 Hz, 2H each, C_6H_4), 5.47 (s, br, 1H, exo-H of =CH₂), 5.00 (s, br, 1H, endo-H of =CH₂), 3.38, 3.34 (both s, 3H each, OCH₃), 2.49 (m, 6H, PCHCH₃), 1.35 (dvt, N = 14.0, J(HH) = 7.2 Hz, 18H, PCHCH₃), 1.18 (dvt, N = 12.8, J(HH) = 6.8 Hz, 18H, PCHCH₃). ¹³C NMR (100.6 MHz, C_6D_6): δ 159.3, 158.6 (both s, COMe), 142.8 (dt, J(RhC) = 15.1, J(PC) = 4.0 Hz, RhC), 134.4, 134.0 (both s, ipso-C of C₆H₄), 133.8 (dt, J(RhC) = 20.1, J(PC) = 6.0 Hz, RhC), 130.7, 129.8, 113.9, 113.6 (all s, C_6H_4), 126.9 (d, br, J(RhC) = 2.0 Hz, $=C(p-C_6H_4OMe)_2$), 97.0 (s, br, =CH₂), 54.8 (s, OCH₃), 23.5 (vt, N = 19.1 Hz, PCHCH₃), 21.0, 19.8 (both s, PCHCH₃). ³¹P NMR (162.0 MHz, C₆D₆): δ 30.9 (d, J(RhP) = 116.9 Hz). Anal. Calcd for $C_{36}H_{58}ClO_2P_2Rh$: C, 59.79; H, 8.08; Rh, 14.23. Found: C, 59.78; H, 8.25; Rh, 14.44.

Preparation of *trans*-[**RhCl**{ η^2 -**H**₂**C**=*C*=*C*(*t***Bu**)**Ph**}(**PiPr**_3)₂] (*syn*- and *anti*-34). A solution of 27 (87 mg, 0.14 mmol) in toluene (3 mL) was stirred for 2 h at 95 °C. A change of color from orange to yellow occurred. After the solution was cooled to room temperature, the solvent was evaporated in vacuo and the residue washed twice with 1-mL portions of ether (0 °C). The NMR spectra of the yellow solid indicated that a mixture of *syn*-34 and *anti*-34 in the molar ratio of ca. 2:1 was formed. After the yellow solid was dissolved in toluene (3 mL) and the solution stirred again for 6 h at 95 °C, the ratio of *syn*-34 and *anti*-34 had changed to 10:1. The solvent was removed in vacuo, the residue was dissolved in acetone (6 mL), and the solution was stored for 20 h at -78 °C. Yellow crystals precipitated that were separated from the mother liquor, washed twice with 1-mL portions of pentane

(0 °C), and dried. The NMR spectra confirmed that a pure sample of syn-34 was isolated. Yield: 61 mg (67%). Mp: 132 °C dec. IR (C₆H₆): ν (C=C=C=C) 1950 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 8.33, 7.24 (both m, 5H, C₆H₅), 5.62 (t, J(PH) = 2.4 Hz, 1H, exo-H of =CH₂), 5.21 (s, br, 1H, endo-H of =CH₂), 2.43 (m, 6H, PCHCH₃), 1.26 (s, 9H, C(CH₃)₃), 1.23 (dvt, N = 14.0, J(HH) = 7.2 Hz, 18H, PCHC H_3), 1.18 (dvt, N = 13.2, J(HH) = 6.8 Hz, 18H, PCHC H_3). ¹³C NMR (100.6 MHz, CDCl₃): δ 143.6 (dt, J(RhC) = 16.1, J(PC) = 4.0 Hz, RhC), 142.4 (s, ipso-C of C_6H_5), 134.3 (d, J(RhC) = 3.0 Hz, =C-(tBu)Ph), 132.6 (dt, J(RhC) = 18.1, J(PC) = 4.0 Hz, RhC), 130.1, 127.1, 125.9 (all s, C_6H_5), 100.2 (s, = CH_2), 24.3 (vt, N = 20.0 Hz, PCHCH₃), 20.9, 20.5 (both s, PCHCH₃). ³¹P NMR (162.0 MHz, CDCl₃): δ 28.1 (d, J(RhP) = 119.2 Hz). Anal. Calcd for C₃₂H₅₈ClP₂-Rh: C, 59.76; H, 9.09. Found: C, 60.06; H, 9.35. NMR data of anti-**34.** ¹H NMR (400 MHz, CDCl₃): δ 7.24, 6.92 (both m, 5H, C₆H₅), 4.65 (s, br, 1H, exo-H of =CH₂), 4.19 (s, br, 1H, endo-H of =CH₂), 2.55 (m, 6H, PCHCH₃), 1.50 (s, 9H, C(CH₃)₃), 1.38 (dvt, N = 13.2, J(HH) = 6.4 Hz, 18H, PCHCH₃), 1.32 (dvt, N = 12.8, J(HH) = 6.4Hz, 18H, PCHCH₃). ³¹P NMR (162.0 MHz, CDCl₃): δ 29.0 (d, J(RhP) = 119.5 Hz).

Generation of H₂C=C=C(*t***Bu)Ph (35). A slow stream of CO was passed for 30 s either through a solution of 31** (51 mg, 0.08 mmol) or of *syn-***34** (58 mg, 0.09 mmol) in benzene (3 mL) at room temperature. A gradual change of color from yellow to pale yellow occurred. After the solvent was evaporated in vacuo, the NMR spectra of the residue showed that besides **18** the butatriene **35** was formed. It was identified by comparison with the NMR data of related buta-trienes.^{38,39} Data for **35**.¹H NMR (400 MHz, CDCl₃): δ 7.35–7.22 (m, 5H, C₆H₅), 5.13, 5.05 (both d, 1H each, *J*(HH) = 7.6 Hz, =CH₂), 1.24 (s, C(CH₃)₃). ¹³C NMR (100.6 MHz, CDCl₃): δ 168.6, 158.7 (both s, *C*=CH₂ and *C*=CPh₂), 140.0 (s, ipso-C of C₆H₅), 135.3 (s, =CPh₂), 128.6, 127.8, 127.2 (all s, C₆H₅), 89.3 (s, =CH₂), 37.8 (s, *C*(CH₃)₃). 30.1 (s, C(CH₃)₃).

Preparation of *trans*-[**RhI**(η^2 -**H**₂**C**=*C*=**CPh**₂)(**PiPr**₃)₂] (38). **Method a.** A suspension of **36** (97 mg, 0.13 mmol) and Na₂CO₃ (500 mg, 4.72 mmol) in a 1:1 mixture of acetone and THF (4 mL) was treated dropwise with CH₃I (60 μ L, 135 mg, 0.95 mmol) at room temperature. A change of color from red to yellow occurred. After the reaction mixture was stirred for 6 h, the solvent was evaporated in vacuo, and the residue extracted with cooled CH₂Cl₂ (3 mL, -30 °C). The extract was brought to dryness in vacuo, and the remaining yellow solid was washed three times with 2-mL portions of acetone and dried in vacuo. Yield: 75 mg (76%).

Method b. A suspension of 1 (88 mg, 0.14 mmol) and Na₂CO₃ (500 mg, 4.72 mmol) in a 1:1 mixture of acetone and THF (4 mL) was treated dropwise with CH₃I (60 μ L, 135 mg, 0.95 mmol) at room temperature. A change of color from red to yellow occurred. After the reaction mixture was stirred for 6 h, the solvent was evaporated in vacuo and the residue extracted with CH2Cl2 (3 mL, 0 °C). The extract was brought to dryness in vacuo and the residue dissolved in THF (4 mL). The solution was treated with KI (300 mg, 1.81 mmol) and stirred for 3 h at room temperature. The solvent was removed and the yellow residue extracted with benzene (5 mL). After the extract was filtered, the solvent was evaporated in vacuo, and the remaining yellow solid was washed three times with 2-mL portions of acetone (0 °C) and dried. Yield: 83 mg (82%). Mp: 146 °C dec. IR (C_6H_6): ν (C=C=C=C) 1710 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 8.62, 7.26 (both m, 10H, C_6H_5), 5.13 (s, br, 1H, exo-H of =CH₂), 4.78 (s, br, 1H, endo-H of =CH₂), 2.68 (m, 6H, PCHCH₃), 1.29 (dvt, N = 13.8, J(HH) = 7.0 Hz, 18H, PCHCH₃), 1.19 (dvt, N = 12.9, J(HH) = 6.6 Hz, 18H, PCHCH₃). ¹³C NMR (100.6 MHz, CDCl₃): δ 142.4 (dt, J(RhC) = 18.1, J(PC) = 3.0 Hz, RhC), 140.4, 140.0 (both s, ipso-C of C₆H₅), 135.9 (dt, J(RhC) = 20.1, *J*(PC) = 5.0 Hz, RhC), 128.8, 128.3, 128.1, 127.6, 126.5, 126.2 (all s, C₆H₅), 127.5 (s, br, =CPh₂), 98.3 (s, =CH₂), 24.3 (vt, N = 20.0 Hz, PCHCH₃), 20.9, 20.5 (both s, PCHCH₃). ³¹P NMR (162.0 MHz,

CDCl₃): δ 28.9 (d, J(RhP) = 113.5 Hz). Anal. Calcd for C₃₄H₅₄IP₂-Rh: C, 54.12; H, 7.21; Rh, 13.64. Found: C, 53.94; H, 7.49; Rh, 13.41.

Preparation of *trans*-[RhI(η^2 -D₂C=C=C=CPh₂)(PiPr₃)₂] (38-d₂). This compound was prepared as described for 38 from 36 (112 mg, 0.15 mmol) and CD₃I (60 μ L, 138 mg, 0.95 mmol). A yellow microcrystalline solid was obtained. Yield: 83 mg (73%). Mp: 158 °C dec. IR (C₆H₆): v(C=C=C=C) 1943 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 8.54, 7.17 (both m, 10H, C₆H₅), 2.60 (m, 6H, PCHCH₃), 1.20 (dvt, N = 14.0, J(HH) = 6.4 Hz, 18H, PCHCH₃), 1.19 (dvt, N =12.9, J(HH) = 6.6 Hz, 18H, PCHCH₃). ²H NMR (61.4 MHz, C₆H₆): δ 5.35 (s, br, exo-D of =CD₂), 4.86 (s, br, endo-D of =CD₂). ¹³C NMR (100.6 MHz, CDCl₃): δ 142.3 (dt, J(RhC) = 18.1, J(PC) = 5.0 Hz, RhC), 140.4, 140.1 (both s, ipso-C of C_6H_5), 136.0 (dt, J(RhC) =20.1, *J*(PC) = 5.0 Hz, RhC), 128.8, 128.3, 128.1, 127.6, 126.5, 126.2 (all s, C₆H₅), 127.5 (m, =CPh₂), 24.3 (vt, N = 20.1 Hz, PCHCH₃), 20.9, 20.5 (both s, PCHCH₃); signal of =CD₂ not exactly located. ³¹P NMR (162.0 MHz, CDCl₃): δ 29.0 (d, J(RhP) = 113.4 Hz). Anal. Calcd for C₃₄H₅₂D₂IP₂Rh: C, 53.98; H, 7.46. Found: C, 54.34; H, 7.82.

Preparation of *trans*-[RhI{ η^2 -H₂C=C=C=C(p-C₆H₄OMe)₂}-(PiPr₃)₂] (39). This compound was prepared as described for 38, either according to method a from 37 (121 mg, 0.15 mmol), Na₂CO₃ (500 mg, 4.72 mmol), and CH₃I (60 µL, 135 mg, 0.95 mmol) or according to method b from 20 (134 mg, 0.18 mmol), Na₂CO₃ (550 mg, 5.20 mmol), and CH₃I (65 µL, 147 mg, 1.04 mmol) to give a yellow microcrystalline solid. Yield: 91 mg (74%) following method a and 122 mg (79%) following method b. Mp: 156 °C dec. IR (C₆H₆): ν (C=C= C=C) 1790 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 8.50, 7.01, 6.80, 6.72 (all d, J(HH) = 8.8 Hz, 2H each, C₆H₄), 4.99 (s, br, 1H, exo-H of =CH₂), 4.64 (s, br, 1H, endo-H of =CH₂), 3.73, 3.69 (both s, 3H each, OCH₃), 2.59 (m, 6H, PCHCH₃), 1.20 (dvt, N = 13.6, J(HH) = 6.8 Hz, 18H, PCHC*H*₃), 1.10 (dvt, *N* = 12.8, *J*(HH) = 6.8 Hz, 18H, PCHC*H*₃). ¹³C NMR (100.6 MHz, CDCl₃): δ 158.4, 157.8 (both s, COMe), 142.6 (dt, J(RhC) = 17.1, J(PC) = 4.0 Hz, RhC), 133.3, 132.9 (both s, ipso-C of C_6H_4), 132.0 (dt, J(RhC) = 20.1, J(PC) = 5.0 Hz, RhC), 130.1, 129.3, 113.3, 112.9 (all s, C_6H_4), 126.6 (s, br, = $C(p-C_6H_4OMe)_2$), 96.9 (s, br, =CH₂), 55.3, 55.2 (both s, OCH₃), 24.2 (vt, N = 19.8 Hz, PCHCH3), 20.9, 20.4 (both s, PCHCH3). 31P NMR (162.0 MHz, CDCl₃): δ 28.9 (d, J(RhP) = 113.9 Hz). Anal. Calcd for C₃₆H₅₈IO₂P₂-Rh: C, 53.08; H, 7.18. Found: C, 52.84; H, 7.00.

Preparation of trans-[RhCl(η^2 -H₂C=C=CPh₂)(PiPr₃)₂] (40). A solution of 1 (160 mg, 0.25 mmol) in benzene (5 mL) was stirred for 40 h under an atmosphere of hydrogen at room temperature. A change of color from red to yellow occurred. After the solvent was evaporated in vacuo, the remaining yellow solid was washed twice with 1-mL portions of pentane and dried. Yield: 152 mg (95%). Mp: 201 °C. IR (C₆H₆): ν (C=C=C) 1690 cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): δ 9.03, 7.47, 7.36, 7.31, 7.13, 7.12 (all m, 10H, C_6H_5), 2.41 (dt, J(RhH) = $2.1, J(PH) = 5.1 Hz, 2H, =CH_2), 2.33 (m, 6H, PCHCH_3), 1.21 (dvt,)$ N = 13.5, J(HH) = 7.0 Hz, 18H, PCHCH₃), 1.15 (dvt, N = 12.8, J(HH)= 6.7 Hz, 18H, PCHCH₃). ¹³C NMR (CDCl₃, 100.6 MHz): δ 173.3 (dt, J(RhC) = 23.1, J(PC) = 6.0 Hz, =C =), 143.9, 140.6 (both s,ipso-C of C₆H₅), 128.7, 128.2, 128.0, 127.4, 125.6, 125.4 (all s, C₆H₅), 123.1 (s, = CPh_2), 22.1 (vt, N = 18.6 Hz, $PCHCH_3$), 20.6, 19.6 (both s, PCHCH₃), 16.4 (d, J(RhC) = 13.1 Hz, =CH₂). ³¹P NMR (C₆D₆, 81.0 MHz): δ 32.7 (d, J(RhP) = 116.3 Hz). Anal. Calcd for C₃₃H₅₄-Cl₁P₂Rh: C, 60.88; H, 8.36. Found: C 60.76; H, 8.38.

Preparation of *trans*-[**RhCl**{ η^2 -**H**₂*C*=*C*(**CF**₃)**Ph**)(**PiPr**₃)₂] (**41**). This compound was prepared as described for **40** from **26** (107 mg, 0.17 mmol) to give a yellow microcystalline solid. Yield: 103 mg (96%). Mp: 180 °C. IR (C₆H₆): ν (**C**=**C**=**C**) 1690 cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): δ 8.86, 7.25 (both m, 5H, C₆H₅), 2.62 (m, 2H, =**CH**₂), 2.31 (m, 6H, PCHCH₃), 1.23 (dvt, *N* = 13.5, *J*(HH) = 6.9 Hz, 18H, PCHCH₃), 1.12 (dvt, *N* = 12.8, *J*(HH) = 6.2 Hz, 18H, PCHCH₃). ¹³C NMR (CDCl₃, 100.6 MHz): δ 179.0 (m, =**C** =), 134.8 (s, ipso-C of C₆H₅), 127.8, 127.3, 126.3 (all s, C₆H₅), 122.5 (q, *J*(FC) = 277.4 Hz, CF₃), 112.9 (q, *J*(FC) = 27.3 Hz, =**C**(Ph)CF₃), 22.3 (vt, *N* = 19.4

Table 1. Crystallographic Data for 3, 21, and 28

	3	21	28
formula	C ₂₉ H ₃₆ PRh	$C_{33}H_{51}Cl_3P_2Rh + 1/_2CH_2Cl_2$	C34H54ClP2Rh
fw	518.46	761.40	663.07
crystal size, mm	$0.50 \times 0.35 \times 0.30$	$0.20 \times 0.23 \times 0.40$	$0.30 \times 0.30 \times 0.40$
crystal syst	orthorhombic	triclinic	monoclinic
space group	<i>Pcab</i> (No. 61)	<i>P</i> -1 (No. 2)	<i>P</i> 21/ <i>c</i> (No. 14)
cell dimens determn	23 rflns, $10^\circ < \theta < 14^\circ$	25 rflns, $8^\circ < \theta < 18^\circ$	23 rflns, $10^\circ < \theta < 14^\circ$
a, Å	16.305(3)	9.463(4)	18.52(1)
b, Å	17.315(4)	11.369(5)	11.193(3)
c, Å	18.344(4)	17.936(9)	16.523(9)
α, deg	90	92.00(3)	90
β , deg	90	97.90(2)	93.35(3)
γ, deg	90	108.25(2)	90
V, Å ³	5178.8(18)	1809(1)	3520(3)
Z	8	2	4
d_{calcd} , g cm ⁻¹	1.330	1.398	1.29
temp, K	293(2)	293(2)	293(2)
μ , mm ⁻¹	0.735	0.872	0.680
scan method	$\omega/ heta$	$\omega/ heta$	$\omega/ heta$
$2\theta(\max), \deg$	52	48	48
total no. of rflns	5620	5618	5567
no. of unique rflns	5072 (R(int) = 0.0000)	5225 (R(int) = 0.0188)	5351 (R(int) = 0.0130)
no. of obsd rflns	$2500 (I > 2\sigma(I))$	$5225 (I > 2\sigma(I))$	$4654 (I > 2\sigma(I))$
no. of rflns used for refinement	5072	4411	4654
no. of params refined	286	376	559
final \hat{R} indices	$R_1 = 0.0523$	$R_1 = 0.0317$	$R_1 = 0.0214$
	$wR_2 = 0.1170^a (I > 2\sigma(I))$	$wR_2 = 0.0791^a (I > 2\sigma(I))$	$wR_2 = 0.0568^a (I > 2\sigma(I))^2$
<i>R</i> indices (all data)	$R_1 = 0.1597$	$R_1 = 0.0481$	$R_1 = 0.0305$
	$wR_2 = 0.1483^a$	$wR_2 = 0.0858^a$	$wR_2 = 0.0610^a$
resid electron density, e Å ³	0.999/0.406	0.707/0.798	0.296/0.170

 ${}^{a}w^{-1} = [\sigma^{2}F_{o}^{2} + (0.0681P)^{2} + 0.0000P]$ (3), $w^{-1} = [\sigma^{2}F_{o}^{2} + (0.0422P)^{2} + 1.8768P]$ (21), $w^{-1} = [\sigma^{2}F_{o}^{2} + (0.0456P)^{2} + 0.0000P]$ (28), where $P = (F_{o}^{2} + 2F_{c}^{2})/3$.

Hz, PCHCH₃), 20.5, 19.5 (both s, PCHCH₃), 18.9 (d, br, J(RhC) = 13.9 Hz, =CH₂). ³¹P NMR (CDCl₃, 81.0 MHz): δ 33.5 (d, J(RhP) = 113.4 Hz). ¹⁹F NMR (CDCl₃, 188.3 MHz): δ -59.44 (s). MS (70 eV): m/z 642 (M⁺), 458 (RhCl(PiPr₃)₂⁺), 184 (H₂C=C=C(Ph)CF₃⁺). Anal. Calcd for C₂₈H₄₉ClF₃P₂Rh: C, 52.30; H, 7.68; Rh, 16.00. Found: C, 52.21; H, 7.64; Rh, 15.53.

Reaction of 40 with CO. A slow stream of CO was passed for 1 min through a solution of **40** (35 mg, 0.05 mmol) in C_6D_6 (0.5 mL) at 10 °C. A gradual change of color from yellow to pale yellow occurred. The solution was stored for 5 h at room temperature and then investigated by NMR spectroscopy. The ¹H, ¹³C, and ³¹P NMR spectra indicated that besides **18** the 1,1-disubstituted allene $CH_2=C=CPh_2$ (**42**)⁴⁵ was formed.

Reaction of 41 with CO. This reaction was carried out analogously as described for **40** with **41** (40 mg, 0.06 mmol) as starting material. Besides the formation of **18**, only that of CH₂=C=C(CF₃)Ph (**43**) was observed. NMR data for **43**. ¹H NMR (C₆D₆, 400 MHz): δ 7.38, 7.06, 6.99 (all m, 5H, C₆H₅), 4.75 (q, *J*(FH) = 3.2 Hz, =CH₂). ¹³C NMR (C₆D₆, 100.6 MHz): δ 210.2 (q, *J*(FC) = 5.0 Hz, =C=), 138.0 (m, ipso-C of C₆H₅), 129.0, 128.4, 127.3 (all s, C₆H₅), 124.2 (q, *J*(FC) = 273.7 Hz, CF₃), 102.0 (q, *J*(FC) = 32.2 Hz, =C(Ph)CF₃), 83.1 (s, = CH₂). ¹⁹F NMR (C₆D₆, 188.3 MHz): δ -60.70 (s).

Preparation of *trans*-[RhCl(η^2 -Ph₂C=*C*=*C*=*C*=CPh₂)(PiPr₃)₂] (44). A solution of 1 (180 mg, 0.28 mmol) in toluene (3 mL) was stirred for 5 days at 95 °C. After the solution was cooled to room temperature, the residue was washed three times with 2-mL portions of ether and then twice 1-mL portions of acetone (-20 °C). The remaining solid was dissolved in acetone (3 mL, 25 °C) and the solution was stored for 5 days at -78 °C. Bright red crystals precipitated, which were separated from the mother liquor, washed twice with 1-mL portions of acetone (-20 °C), and dried. Yield: 75 mg (88%). The IR and NMR data of the product were identical to those of 44.⁴⁶

 described for 44 from 20 (190 mg, 0.27 mmol) to give bright red crystals. Yield: 75 mg (88%). Mp: 155 °C dec. IR (C₆H₆): v(C=C= C=C) 1939 cm⁻¹. ¹H NMR (400 MHz, C₆D₆): δ 8.82, 7.53, 7.28, 7.26 (all d, J(HH) = 8.8 Hz, 2H each, C₆H₄), 3.91, 3.88 (both s, 3H each, OCH₃), 3.89 (s, 6H, OCH₃), 2.56 (m, 6H, PCHCH₃), 1.44 (dvt, N = 13.6, J(HH) = 6.8 Hz, 18H, PCHCH₃), 1.27 (dvt, N = 13.2, J(HH)= 6.4 Hz, 18H, PCHCH₃). ¹³C NMR (100.6 MHz, CD₂Cl₂): δ 160.5 (s, =C=), 159.3, 159.1, 158.9, 158.4 (all s, COMe), 134.0 (s, br, =C=), 134.1, 133.5, 132.4, 131.1 (all s, ipso-C of C₆H₄), 130.9, 130.1, 129.8, 129.6 (all s, C_6H_4), 128.0 (dt, J(RhC) = 20.1, J(PC) = 4.0 Hz, RhC), $127.2 (d, J(RhC) = 2.0 Hz, =C(p-C_6H_4OMe)_2), 115.3 (s, =C(p-C_6H_4-C_6H_4))$ OMe_{2} , 114.0, 113.9, 113.8, 113.4 (all s, C₆H₄), 113.4 (dt, J(RhC) = 16.1, J(PC) = 5.0 Hz, RhC), 55.6, 55.5, 55.4 (all s, OCH₃), 23.6 (vt, N = 19.2 Hz, PCHCH₃), 21.9, 19.7 (both s, PCHCH₃). ³¹P NMR (162.0 MHz, C_6D_6): δ 32.4 (d, J(RhP) = 113.9 Hz). Anal. Calcd for $C_{52}H_{70}$ -ClO₄P₂Rh: C, 65.10; H, 7.35. Found: C, 64.89; H, 6.94.

X-ray Structure Determination of Compounds 3, 7, 12, 21, and 28. Single crystals of **3, 7,** and **12** were grown by cooling a solution in acetone at -30 °C, those of **21** by slow diffusion of pentane into a saturated solution of **21** in CH₂Cl₂ at room temperature, and those of **28** by cooling a solution in pentane at -10 °C. Crystal data collection parameters are summarized in Table 1. The data were collected on an Enraf-Nonius CAD4 diffractometer using monochromated Mo K α radiation ($\lambda = 0.71073$ Å). Crystal data were corrected by Lorentz and polarization effects, and empirical absorption corrections were applied (Ψ -scan method, minimum transmissions 91.97% (**3**), 95.4% (**7**), 97.07% (**12**), and 97.49% (**28**)). The structures were solved by direct methods (**3, 7, 12, 21**) and the Patterson method (**28**) (SHELXS-86).⁵⁰ Atomic coordinates and anisotropic thermal parameters of non-hydrogen atoms were refined by full-matrix least squares on F^2 (SHELXL-93).⁵¹

⁽⁵⁰⁾ Sheldrick, G. M. Acta Crystallogr. Sect. A 1990, 46, 467.

⁽⁵¹⁾ Sheldrick, G. M. Program for Crystal Structure Refinement; Universität Göttingen, 1996.

Except for H1a and H1b of compound **28**, the positions of all hydrogen atoms were calculated according to ideal geometry and refined using the riding method. The asymmetric unit of **21** contains one-half of the solvent molecule CH_2Cl_2 , which was disordered. Near to the center of symmetry there was one chlorine atom and one-half of the carbon atom, and the second half was generated by a symmetry operation.

Acknowledgment. We thank the Deutsche Forschungsgemeinschaft (Grant SFB 347) and the Fonds der Chemischen Industrie for financial support. Moreover, we gratefully acknowledge support by Mrs. R. Schedl and Mr. C. P. Kneis (elemental analyses and DTA), Mrs. M.-L. Schäfer and Dr. W. Buchner (NMR measurements), BASF AG for gifts of chemicals, and in particular Mrs. I. Geiter and Mrs. A. Spenkuch for valuable practical assistance.

Supporting Information Available: Tables of data collection parameters, bond lengths and angles, positional and thermal parameters, and least-squares planes for **3**, **21**, and **28**; data for these compounds are also given in CIF format. (For the corresponding data of **7** and **12**, see ref 5.) This material is available free of charge via the Internet at http://pubs.acs.org.

JA012479G